学习笔记: 机器学习经典算法-多项式回归

简介: 机器学习经典算法-个人笔记和学习心得分享

多元线性回归分析 基于数据间存在线性关系的前提假设进行数据的建模和回归分析,但在实际应用场景中很少有能够满足具有强线性关系特点的数据集,更多地是表现出 非线性关系 的数据。多项式回归 方法基于线性回归的处理逻辑提出,主要应用于非线性关系数据的 回归预测任务。

1、算法基本过程

在线性回归中模型中,类如平面直线模型 $f(x) = ax + b$,其中就有 $x$ 为样本特征,$a,b$ 为模型参数。而对于一组满足非线性关系的数据,类如样本输出标记与样本特征满足二次曲线,使用线性回归生成的拟合模型就不如二次曲线的拟合效果好。同样是一个特征的样本,那么这个样本特征 $x$ 与样本输出标记 $y$ 的曲线关系可描述为 :

$y = ax^2 + bx +c$

1.2 多项式与线性关系式的转换

从样本的 一个特征 角度来理解,二次方程 $y = ax^2_{1} + bx_{1} +c $ 描述了样本的特征 $x_{1}$ 与样本输出标记 $y$ 之间的非线性关系。但如果将方程中的 $x^2_{1}$ 视作样本的另一个特征来看( 升维处理 ),为了方便识别换元成 $x_{2} = x_1$,一元二次方程此时变成了多元线性方程 $y = ax_2 + bx_{1} + c$ ,最后应用线性回归的方法求解多项式的参数,即 多项式回归 的基本过程。 多项式回归 的关键在于为原始数据样本添加新特征(升维),这些新特征来自原始特征的多项式组合,来转换成线性关系式,从而求解多项式参数。

### Prepare datasets
import numpy as np
x = np.random.uniform(-3,3,size = 100).reshape((-1,1))
y = .5 * x ** 2 + 1*x + 2 + np.random.normal(size =(100,1))

### 通过添加特征 x^2 的方式 转换多项式为 多元线性关系式并基于线性回归的方法进行参数求解
X = np.hstack([x**2,x])
from sklearn.linear_model import LinearRegression
lin_reg = LinearRegression()
lin_reg.fit(X,y)
lin_reg.coef_

2、scikit-learn 框架下的多项式回归处理流程

  • Step.1 基于原始特征构造新特征
### Raw datasets
import numpy as np
x = np.random.uniform(-3,3,size = 100).reshape((-1,1))
y = .5 * x ** 2 + 1*x + 2 + np.random.normal(size =(100,1))
### PolynomialFeatures 特征构造
from sklearn.preprocessing import PolynomialFeatures 
poly = PolynomialFeatures(degree=2) ### 构造最高二次幂的新特征
poly.fit(x)
X = poly.transform(x) ### 返回添加了构造特征的特征矩阵,分别是 (x^0,x^1,X^2构造特征列

原始特征数目与构造特征的数目关系
(1) 原始样本仅包含一个特征$x_1$,构造最高2次幂的特征将返回$(x_1^{0},x_1^{1},x_1^{2})$的结果。
(2) 原始样本包含两个以上的特征,如包含两个特征$x_1,x_2$,则构造最高2次幂的特征将返回$(1,x_1^{1},x_2^{1},x_1^{2}, x_1x_2 ,x_2^{2})$ 6 个特征构造结果。

import numpy as np
x = np.arange(1,11).reshape(5,2) ### Raw Features

from sklearn.preprocessing import PolynomialFeatures ### 特征构造
poly = PolynomialFeatures(degree=2) ### 构造二次幂样本特征
poly.fit(x)
poly.transform(x)   ### PolynomialFeatures


(3) 基于 2个初始特征构造最高 3 次幂的新特征, 将产生十种组合特征:
$$1,x_1,x_2$$
$$x_1^{2},x_2^{2},x_1x_2$$
$$x_1^{3},x_2^{3},x_1^{2}x_2,x_1x_2^{2}$$
在构造特征的时候,阶数越高,模型的参数发生指数级增长,意味模型复杂度越高

  • Step.2 基于添加了构造特征的数据进行线性回归
    from sklearn.linear_model import LinearRegression
    lin_reg = LinearRegression()
    lin_reg.fit(X,y)
    lin_reg.coef_
    

2.2 使用scikit-learn 的Pipline 流程处理多步骤的分析任务

### Prepare datasets
import numpy as np
x = np.random.uniform(-3,3,size = 100).reshape((-1,1))
y = .5 * x ** 2 + 1*x + 2 + np.random.normal(size =(100,1))

### make pipline
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import StandardScaler
poly_reg = Pipeline([
    ("poly",PolynomialFeatures(degree=2)), ### 格式为 管道名,当前管道需执行的函数
    ("std_scaler",StandardScaler()),
    ("lin_reg",LinearRegression())
])

### use pipline to predict
poly_reg.fit(x,y)
poly_reg.predict(x)
目录
相关文章
|
2月前
|
机器学习/深度学习 算法 数据挖掘
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构。本文介绍了K-means算法的基本原理,包括初始化、数据点分配与簇中心更新等步骤,以及如何在Python中实现该算法,最后讨论了其优缺点及应用场景。
146 4
|
6天前
|
机器学习/深度学习 人工智能 算法
机器学习算法的优化与改进:提升模型性能的策略与方法
机器学习算法的优化与改进:提升模型性能的策略与方法
80 13
机器学习算法的优化与改进:提升模型性能的策略与方法
|
22天前
|
算法
PAI下面的gbdt、xgboost、ps-smart 算法如何优化?
设置gbdt 、xgboost等算法的样本和特征的采样率
44 2
|
2月前
|
机器学习/深度学习 算法 数据挖掘
C语言在机器学习中的应用及其重要性。C语言以其高效性、灵活性和可移植性,适合开发高性能的机器学习算法,尤其在底层算法实现、嵌入式系统和高性能计算中表现突出
本文探讨了C语言在机器学习中的应用及其重要性。C语言以其高效性、灵活性和可移植性,适合开发高性能的机器学习算法,尤其在底层算法实现、嵌入式系统和高性能计算中表现突出。文章还介绍了C语言在知名机器学习库中的作用,以及与Python等语言结合使用的案例,展望了其未来发展的挑战与机遇。
55 1
|
2月前
|
机器学习/深度学习 自然语言处理 算法
深入理解机器学习算法:从线性回归到神经网络
深入理解机器学习算法:从线性回归到神经网络
|
2月前
|
机器学习/深度学习 人工智能 算法
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
手写数字识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Flask框架,开发网页端操作平台,实现用户上传一张图片识别其名称。
111 0
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
|
2月前
|
机器学习/深度学习 算法
深入探索机器学习中的决策树算法
深入探索机器学习中的决策树算法
44 0
|
2月前
|
机器学习/深度学习 算法 Python
机器学习入门:理解并实现K-近邻算法
机器学习入门:理解并实现K-近邻算法
42 0
|
3月前
|
机器学习/深度学习 算法 Java
机器学习、基础算法、python常见面试题必知必答系列大全:(面试问题持续更新)
机器学习、基础算法、python常见面试题必知必答系列大全:(面试问题持续更新)
|
3月前
|
机器学习/深度学习 人工智能 算法
【玉米病害识别】Python+卷积神经网络算法+人工智能+深度学习+计算机课设项目+TensorFlow+模型训练
玉米病害识别系统,本系统使用Python作为主要开发语言,通过收集了8种常见的玉米叶部病害图片数据集('矮花叶病', '健康', '灰斑病一般', '灰斑病严重', '锈病一般', '锈病严重', '叶斑病一般', '叶斑病严重'),然后基于TensorFlow搭建卷积神经网络算法模型,通过对数据集进行多轮迭代训练,最后得到一个识别精度较高的模型文件。再使用Django搭建Web网页操作平台,实现用户上传一张玉米病害图片识别其名称。
85 0
【玉米病害识别】Python+卷积神经网络算法+人工智能+深度学习+计算机课设项目+TensorFlow+模型训练