学习笔记: 线性代数-零空间的基 与 秩-零度化定理

简介: 线性代数个人学习笔记

零空间是对于一个矩阵$A$,满足线性系统$Ax=0$,所有的解$x$组成的向量空间。由于矩阵$A$零空间本身隐藏在矩阵$A$的内部,所以它的存在相对抽象。

构造零空间的基

构造一个矩阵$A$的零空间的基,本质是对求出线性系统$Ax=0$的解空间进行简单变形,从而得到零空间的基。

  • 示例说明:
    存在矩阵A,通过高斯消元求取它的行最简形式:

    从系数矩阵A 的行最简形式得到线性系统$Ax=0$的解$\vec x$的形式如下:

    这个解的形式显示了组成线性系统$Ax=0$的任意一个解的内部分量所存在的线性关系,$x_1$和$x_2$这两个分量可以由其它四个分量$x_3,x_4,x_5,x_6$的线性组合所表示。将所有解改写成列向量形式:

    从解的列向量形式可以看到对分量$x_3,x_4,x_5,x_6$取任意实数$R$,就可以得到线性系统$Ax=0$的所有解空间的其中一组解$\vec x=(x_1,x_2.x_3,x_4,x_5,x_6)$,这个解可通过单独提出分量$x_3,x_4,x_5,x_6$拆分成以下形式的线性组合进行表示:

    拆分后得到的四个线性无关的向量$\vec v_1=(1,-2,1,0,0,0),\vec v_2=(2,-3,0,1,0,0),\vec v_3=(3,-4,0,0,1,0),\vec v_4=(5,-6,0,0,0,1)$,通过这四个向量的线性组合$k_1 \vec v_1+k_2 \vec v_2+k_3 \vec v_3+k_4 \vec v_4$就可以表示出线性系统的解$\vec x$,意味着线性系统的解$\vec x$构成的空间就是向量$\vec v_1, \vec v_2, \vec v_3,\vec v_4$的生成空间,也就是系线性系统系数矩阵$A$的零空间。由空间的基的定义(给定$n$维空间的一组基,则空间中的任意一个向量都可以表示成这组基的线性组合)可知,这个四个线性无关向量$\vec v_1, \vec v_2, \vec v_3,\vec v_4$就是它们生成空间的基,也是线性系统系数矩阵$A$的零空间的基,这个空间的维度就是$4$

综上,对于线性系统$Ax=0$,把系数矩阵$A$化为行最简形式之后,自由列的列数就是矩阵A的零空间的维度:

矩阵的行最简形式的一般形式


秩-零度化定理

对于一个$m*n$的矩阵有,将其化为行最简形式后,主元列数为其列空间的维度,也就是矩阵的秩,同时也是矩阵行空间的维度。当求出矩阵的主元列列数$r$,则矩阵的自由列列数(也就是矩阵的零空间的维度)等于$n-r$。就有 $\color {#e94513} {矩阵的列空间的维度+ 零空间的维度 = n}$ 。

列空间的维度也就是矩阵的秩,零空间的维度的专业名词叫做$零化度(Nullity)$
$\therefore 秩-零度化定理: \ \ \ 秩(rank) +零化度(Nullity) = n $

零空间的维度为0

零空间的维度等于一个矩阵的行最简形式中自由列的个数,当一矩阵全部都是主元列的时候,也就是一个$m*n$的矩阵的列空间的维度为$n$的时候,矩阵的零空间维度为0。对于一个方阵来说,即为满秩的时候,矩阵的零空间维度为0


理解上一章节线代--零空间中最后的疑惑
为什么对于两个平面(二维欧式空间),它们在三维空间内不可能正交的,它们只可能在四维空间中出现正交。

首先,矩阵的零空间是与矩阵的行空间正交的一个空间,零空间内的任意向量垂直于行空间的所有向量;
对于一个$m*n$的矩阵来说,行空间和零空间都是一个$n$维空间的子空间;
假设矩阵的行空间是一个二维欧式空间的话,那么矩阵的零空间的维度是$n-2$;
如果$n=3$,就是在一个三维空间内,同时能存在一个二维子空间和一个一维子空间正交;
当$n \ge 4$,就是在一个四维以上的空间内,当存在一个二维的子空间(矩阵的行空间)的前提下,能找到另一个二维子空间(矩阵的零空间)与矩阵的二维行空间正交。所以两个二维欧式空间正交只能在四维以上的空间内发生。

目录
相关文章
|
数据采集 SQL 监控
如何分析重复数据?
【4月更文挑战第2天】如何分析重复数据?
489 2
|
人工智能 自然语言处理 语音技术
《AI赋能鸿蒙Next:为特殊人群打造无障碍交互新体验》
在科技飞速发展的今天,鸿蒙Next设备借助人工智能技术,显著提升了特殊人群的无障碍交互体验。针对视障人群,提供精准屏幕朗读、视觉辅助智能问答和导航避障辅助;面向听障人群,实现AI声音修复、实时字幕与语音转文字;助力语言障碍者和老年人群体,通过AI优化交流与操作体验。开发者可利用鸿蒙Next的AI能力,深入了解用户需求,进行测试与优化,共同创造友好、便捷的无障碍环境,让特殊人群更好地融入数字社会,享受科技带来的美好生活。
645 8
|
机器学习/深度学习 人工智能 自然语言处理
GLM-4V-Flash:智谱 AI 免费开放的图像理解大模型 API 接口
智谱AI推出的GLM-4V-Flash是一款专注于图像理解的免费开放大模型,提供API接口支持用户上传图片URL或Base64编码图片获取详细的图像描述。该模型通过深度学习和卷积神经网络技术,简化了图像分析流程,提高了开发效率,适用于内容审核、辅助视障人士、社交媒体、教育和电子商务等多个应用场景。
4761 14
GLM-4V-Flash:智谱 AI 免费开放的图像理解大模型 API 接口
|
Unix Linux 虚拟化
VMware Workstation 17.6.2 发布下载,现在完全免费无论个人还是商业用途
VMware Workstation 17.6.2 发布下载,现在完全免费无论个人还是商业用途
54331 16
VMware Workstation 17.6.2 发布下载,现在完全免费无论个人还是商业用途
|
机器学习/深度学习 算法
【机器学习】P问题、NP问题、NP-hard、NP-C问题解析与举例理解
本文解析了P问题、NP问题、NP-hard问题以及NP-Complete问题的概念,并通过实例帮助理解NP问题的特点和复杂性。
4951 1
WK
|
机器学习/深度学习 算法
什么是链式法则
链式法则在微积分中用于求复合函数的导数,简化了一元和多元函数的求导过程。在概率论与统计学中,它能够将复杂的联合概率分布分解为简单条件概率的乘积,便于分析。此外,在机器学习和深度学习等领域,链式法则也是反向传播算法的基础,帮助计算损失函数对网络参数的梯度,实现模型优化。这一法则为处理复合函数及概率问题提供了高效途径。
WK
2107 1
|
算法 编译器 C语言
【C/C++ 编译器的差异化】C++标准库在GCC和VS之间的表现差异
【C/C++ 编译器的差异化】C++标准库在GCC和VS之间的表现差异
1573 1
|
机器学习/深度学习 数据挖掘 Python
【数据挖掘】生成模型和判别模型的区别及优缺点
文章讨论了生成模型和判别模型在数据挖掘中的区别、原理、优缺点,并提供了一些常见的模型示例。
514 0
|
机器学习/深度学习 人工智能 自然语言处理
服务行业自动化
服务行业自动化
360 1
|
缓存 网络协议 安全
HTTP和HTTPS详解
HTTP和HTTPS详解
695 0