从1到100求和学算法思维(二)

简介: 从1到100求和学算法思维(二)

问题描述

"从简单的问题学算法",从1到100求和,学习算法的基本思维,本文是系列的第二篇文章。从1到100求和学算法思维(一)上一篇,为大家介绍了如何一步步的提出方案,发现问题,解决问题,螺旋式上升的思路来解决问题,强调了提出问题远比解决问题更重要。


本文将为大家介绍一种新的算法思维即递归算法,递归算法是程序设计中的一种非常重要的算法,因其抽象程度较高,不易理解,因此对于大部分初学者来说 都是比较困难的,学会递归算法解决问题的基本思路,并灵活运用其分析问题、解决问题。

解决方案

递归算法的核心是递归函数,那递归函数与一般的函数有什么不同呢?首先来看函数的一般定义形式为:

void foo(){}  


为描述方便,形参、函数题、返回值类型等均省略。函数主要有函数名、一对小括号、一对大括号以及返回值类型这几部分构成。而递归函数与一般函数最大的区别在于函数体里面调用自己即:

void foo(){

   foo();

}


上面的函数并没有写完整,如果是这样的形式,会发现函数的调用永远不会结束,即陷入死循环,最终会因为栈溢出而报错,大家可以在自己的电脑上亲自测试感受一下。

因此递归函数除了满足上面第一条特征外,还需要有函数调用结束的判断条件,即函数什么情况下会返回。


接下来,我们将设计这样的一个递归函数,给定初始整数100,然后每次递减1,当最后递减的整数值为0时返回,如下:

100

99

···

2

 

1 (此时递归结束,返回)


如何设计函数满足上面的要求,分三步走:

(1)写出递归的一般形式,

void foo(){

   foo();

}

(2)函数有初始整数值100,且每次递减1,可将上述继续修改为:

void foo(int n){   // 初始值100

   foo(n-1);        // n递减1即n-1

}

(3)编写递归的结束条件,根据需求当整数递减为0时返回

void foo(int n){   // 初始值100

   if ( n == 1)

       return ;

   foo(n-1);        // n递减1即n-1

}

切记,如果递归函数没有结束条件将会陷入无限循环,最终会因为栈溢出而终止程序。

此时再运行的时候,程序就不会出错:

接下来在这个基础上,再增加一点打印信息,即打印每一次减小后的整数。

这两种方式有什么区别?foo(n-1)在System.out.println(n)的上面和下面有什么不一样的地方?


从测试的结果可以看到,

当foo在下面的时候,打印的是100,99,···,1。

当foo在上面的时候,打印的是1,2,···,100。


深入的理解这一点,对于理解递归具有非常的意义,同时今后也能设计非常灵活的算法。这两种方式在今后的学习都会用到,因此需要加以区别。


当打印信息在foo函数上面的时候,意味着先打印整数再递减由于初始值为100,即先打印100再递减,以此类推。


当打印信息在foo函数下面,则意味着先递减再打印那是否意味着递减1,就打印一个整数呢?这也是非常重要的一点,同时也是递归与众不同的地方。


如果是递减1就打印一个整数,那打印的结果为100,99,···,1这和上面的打印是一样的结果,因此显然不是这样。递归的神奇地方就在于,从100一直递减,直到递减为1时结束,然后才执行打印操作。因此打印的结果就是1,2,···,99,100。


现在,可以回到解决1到100求和问题了。利用递归的思想来求解就是让100一直递减到0结束,对于每一次递减后的整数,将其累加起来。因此可以快速的写出下面的代码:

当整数n一直从100递减到1时结束,按照之前的分析是依次打印1,2,···,100,此时将每一次递减后的整数累加到sum变量中,即可完成求和。

结语

本文介绍了什么是递归算法,递归函数设计的注意事项,如何一步步设计递归函数,最后利用递归算法解决了1到100求和问题。递归的思想较为抽象,学习的过程也是从模仿到自己设计,初学时不必追求递归的原理,随着学习的逐步深入慢慢的就会理解。

上述的递归算法是否可以进一步改进呢?欢迎留言,同时也为大家准备了一道习题。

习题:利用递归算法完成1*2*····*100.


目录
相关文章
|
5月前
|
存储 算法 Python
“解锁Python高级数据结构新姿势:图的表示与遍历,让你的算法思维跃升新高度
【7月更文挑战第13天】Python中的图数据结构用于表示复杂关系,通过节点和边连接。常见的表示方法是邻接矩阵(适合稠密图)和邻接表(适合稀疏图)。图遍历包括DFS(深度优先搜索)和BFS(广度优先搜索):DFS深入探索分支,BFS逐层访问邻居。掌握这些技巧对优化算法和解决实际问题至关重要。**
52 1
算法思维之穷举法
算法思维之穷举法
|
7月前
|
算法
常用的简单校验算法:校验和,异或校验,crc校验,LRC校验,补码求和,checksum
常用的简单校验算法:校验和,异或校验,crc校验,LRC校验,补码求和,checksum
1123 1
|
7月前
|
算法 前端开发
前端算法-二进制求和
前端算法-二进制求和
|
7月前
|
算法 vr&ar
1611F - ATM and Students详细题解(*1800,线段树维护前缀和;双指针算法(思维))
1611F - ATM and Students详细题解(*1800,线段树维护前缀和;双指针算法(思维))
51 0
|
算法
增强能力:提升专业知识、熟练职业技能、持续总结面试题、英语词汇、学习数据结构和算法(提升逻辑思维)
增强能力:提升专业知识、熟练职业技能、持续总结面试题、英语词汇、学习数据结构和算法(提升逻辑思维)
|
算法 搜索推荐
【1到100求和学算法】1#开篇
【1到100求和学算法】1#开篇
71 0
|
算法
1到100求和学算法之循环的秘密(1)
1到100求和学算法之循环的秘密(1)
75 0
|
算法 搜索推荐
1到100求和学算法之开篇
1到100求和学算法之开篇
106 0
|
存储 人工智能 算法
从1到100求和学算法思维(六)
从1到100求和学算法思维(六)
150 0