带你读《2022技术人的百宝黑皮书》——倾向得分匹配(PSM)的原理以及应用(3)

简介: 带你读《2022技术人的百宝黑皮书》——倾向得分匹配(PSM)的原理以及应用(3)

带你读《2022技术人的百宝黑皮书》——倾向得分匹配(PSM)的原理以及应用(2) https://developer.aliyun.com/article/1247867?groupCode=taobaotech



匹配算法


当不使用propensityscore时,可以直接基于协变量进行匹配,直接计算两个样本协变量之间的(马氏距离(Mahalanobis Distance) - 知乎 (zhihu.com)),这种方式通常称为CVM(Coviate Matching)。


完成倾向分模型及预测后,每个样本会得到一个propensity score,此时便可以进行匹配步骤了:为每个被干预的样本匹配一个(或多个)虚拟的对照样本。


匹配的基础思路很简单,即找到一个距离最近的样本,实现的具体方法按照渐进的顺序阐述如下:


Nearest Neighbour Matching 最近邻匹配

这是最直接的一种方法,即:对干预组中的用户,选取对照组中在倾向分上相差最小的用户做匹配。


实现上,会有有放回和无放回两种实现方式:


1. 有放回(对照组样本可重复使用):此时整体匹配质量上升,bias下降,当干预组与对照组倾向分分布差异较大时推荐应用。此时使用的对照组样本数会减少,导致variance上升;


2. 无放回:此时匹配结果与匹配顺序有关,顺序需要保证随机。


除了是否放回之外,还有一个可调整的地方在于对单个用户是否可匹配多个样本(over-sampling):通过匹配最近的多个邻居降低了variance,提升了匹配的稳定性。但此时需要给每个邻居赋予权重(eg. 按距离衰减)。


Caliper and Radius Matching 有边界限制的半径匹配


当最近的邻居也相距很远的时候,NN匹配会存在低质匹配的风险。很自然的,我们想到可以限定样本间分数差值的上限,即Caliper。


1. Caliper Matching:匹配时引入倾向分差值的忍受度,高于忍受度的样本丢弃。理论上通过避免低质量匹配降低了bias,但在样本数量较少时也可能因为匹配过少而升高了variance;


2. Radius Matching:不止匹配caliper中的最近样本,使用caliper中的所有样本进行匹配。这种方法的优势在于,当有高质量匹配时使用了更多的样本、而当缺乏高质量匹配时则使用较少的样本。




带你读《2022技术人的百宝黑皮书》——倾向得分匹配(PSM)的原理以及应用(4) https://developer.aliyun.com/article/1247863?groupCode=taobaotech

相关文章
|
机器学习/深度学习 分布式计算 C++
带你读《2022技术人的百宝黑皮书》——因果推断:效应估计的常用方法及工具变量讨论(3)
带你读《2022技术人的百宝黑皮书》——因果推断:效应估计的常用方法及工具变量讨论(3)
207 1
带你读《2022技术人的百宝黑皮书》——倾向得分匹配(PSM)的原理以及应用(6)
带你读《2022技术人的百宝黑皮书》——倾向得分匹配(PSM)的原理以及应用(6)
129 0
|
算法
带你读《2022技术人的百宝黑皮书》——倾向得分匹配(PSM)的原理以及应用(1)
带你读《2022技术人的百宝黑皮书》——倾向得分匹配(PSM)的原理以及应用(1)
287 0
|
算法
带你读《2022技术人的百宝黑皮书》——倾向得分匹配(PSM)的原理以及应用(7)
带你读《2022技术人的百宝黑皮书》——倾向得分匹配(PSM)的原理以及应用(7)
235 0
|
机器学习/深度学习
带你读《2022技术人的百宝黑皮书》——倾向得分匹配(PSM)的原理以及应用(2)
带你读《2022技术人的百宝黑皮书》——倾向得分匹配(PSM)的原理以及应用(2)
206 0
带你读《2022技术人的百宝黑皮书》——倾向得分匹配(PSM)的原理以及应用(8)
带你读《2022技术人的百宝黑皮书》——倾向得分匹配(PSM)的原理以及应用(8)
183 0
|
SQL 算法
带你读《2022技术人的百宝黑皮书》——倾向得分匹配(PSM)的原理以及应用(4)
带你读《2022技术人的百宝黑皮书》——倾向得分匹配(PSM)的原理以及应用(4)
145 0
|
算法 数据可视化
带你读《2022技术人的百宝黑皮书》——倾向得分匹配(PSM)的原理以及应用(5)
带你读《2022技术人的百宝黑皮书》——倾向得分匹配(PSM)的原理以及应用(5)
140 0
|
机器学习/深度学习 算法
带你读《2022技术人的百宝黑皮书》——倾向得分匹配(PSM)的原理以及应用(3)
带你读《2022技术人的百宝黑皮书》——倾向得分匹配(PSM)的原理以及应用(3)
104 0
|
人工智能 分布式计算 算法
带你读《2022技术人的百宝黑皮书》——因果推断:效应估计的常用方法及工具变量讨论(11)
带你读《2022技术人的百宝黑皮书》——因果推断:效应估计的常用方法及工具变量讨论(11)
144 0