带你读《2022技术人的百宝黑皮书》——生成式重排在内容推荐中的应用实践(2)

简介: 带你读《2022技术人的百宝黑皮书》——生成式重排在内容推荐中的应用实践(2)

带你读《2022技术人的百宝黑皮书》——生成式重排在内容推荐中的应用实践(1) https://developer.aliyun.com/article/1246845?groupCode=taobaotech



相关工作


带着上述问题,我们调研了一些具备上下文感知能力的个性化重排方法。


DLCM[8]和PRM[9]分别使用GRU和Transformer结构对候选列表中内容的特征进行提取从而得到每个内容在考虑了上下文相互影响和列表整体信息的预估分,按预估分对候选列表中的内容进行重排序。这类方法虽然简洁高效,但重排序后的列表每个内容的上下文已经发生了改变,即内容参与打分时的上下文与最终内容展现时的上下文并不一致。


miRNN[10]和Seq2slate[11]分别使用RNN和PointerNetwork通过对列表中已选中内容对当前内容的影响进行建模来逐个生成展现列表中的内容。这类方法能够确保打分时的上下文和最终展现给用户时候内容的上下文一致,但在生成每个内容时无法考虑到后续内容对该内容的影响,即对上下文信息的建模并不充分。


EG-Rerank[12]和GRN[13]提出将将重排拆解成由序列生成和序列评估组成的两阶段任务,来实现保持打分上下文与展现上下文一致以及充分建模内容上下文信息从而实现列表整体收益最大化的目标。下面介绍我们在每平每屋频道中应用生成式重排的方案。


技术方案


序列生成


在序列生成环节,出于整体系统链路性能的考虑,我们采用了若干不同的启发式策略并行产生兼顾效率目标与多样性目标的候选列表。


MMR


MMR是一种启发式的多样性算法,其在产生推荐列表每个位置内容时会同时考虑当前内容的相关性和当前内容与前序已选内容中最相似的内容的相似度。


image.png


image.png为候选内容集合,image.png 为已选中内容集合, image.png为内容i的相关性分, image.png为内容i和内容j的相似度分, image.png 为平衡因子, image.png越小生成的列表多样性越高,我们使用不同的超参数image.png 产生了若干组候选列表。



带你读《2022技术人的百宝黑皮书》——生成式重排在内容推荐中的应用实践(3) https://developer.aliyun.com/article/1246843?groupCode=taobaotech

相关文章
|
运维 Kubernetes Cloud Native
云原生之旅:Kubernetes 集群的搭建与实践Python 编程入门:从零基础到编写实用脚本
【8月更文挑战第30天】在数字化转型的大潮中,云原生技术以其弹性、可扩展性及高效运维能力成为企业IT架构升级的关键。本文将通过实际操作演示如何在本地环境搭建一个简易的Kubernetes集群,带你领略云原生的魅力所在。从集群规划到服务部署,每一步都是对云原生理念的深刻理解和应用。让我们共同探索,如何通过Kubernetes集群的搭建和运维,提升业务灵活性和创新能力。
|
机器学习/深度学习 算法
【机器学习】P问题、NP问题、NP-hard、NP-C问题解析与举例理解
本文解析了P问题、NP问题、NP-hard问题以及NP-Complete问题的概念,并通过实例帮助理解NP问题的特点和复杂性。
3455 1
|
搜索推荐 测试技术
淘宝粗排问题之在粗排模型中引入交叉特征如何解决
淘宝粗排问题之在粗排模型中引入交叉特征如何解决
|
SQL 分布式计算 安全
|
搜索推荐 测试技术 流计算
承上启下:基于全域漏斗分析的主搜深度统一粗排
文章首先介绍了淘宝搜索的多阶段检索系统,包括召回、粗排和精排阶段。粗排模型的目标是优化商品的排序,以提高在召回集合中选择优质商品的能力。文章提到,粗排模型与精排模型的目标有所不同,粗排更注重腰部商品的排序,而精排更注重头部商品的排序。 此外,文章还探讨了模型的损失函数形式,发现原始的softmax损失函数在处理多正样本时存在问题,提出了改进的损失函数,使得模型在粗排阶段的表现更佳。最后,作者们总结了优化工作的进展,以及优化样本对齐,以实现更好的整体效果。
|
算法 搜索推荐
带你读《2022技术人的百宝黑皮书》——生成式重排在内容推荐中的应用实践(3)
带你读《2022技术人的百宝黑皮书》——生成式重排在内容推荐中的应用实践(3)
243 0
|
机器学习/深度学习 监控 搜索推荐
深度粗排模型的GMV优化实践:基于全空间-子空间联合建模的蒸馏校准模型
随着业务的不断发展,粗排模型在整个系统链路中变得越来越重要,能够显著提升线上效果。本文是对粗排模型优化的阶段性总结。
1953 0
深度粗排模型的GMV优化实践:基于全空间-子空间联合建模的蒸馏校准模型
|
搜索推荐 算法
带你读《2022技术人的百宝黑皮书》——生成式重排在内容推荐中的应用实践(1)
带你读《2022技术人的百宝黑皮书》——生成式重排在内容推荐中的应用实践(1)
257 0
|
算法 Python
基于python实现深度优先遍历搜索(DFS)
基于python实现深度优先遍历搜索(DFS)
776 0
基于python实现深度优先遍历搜索(DFS)
|
机器学习/深度学习 人工智能 算法
Generator-Evaluator重排模型在淘宝流式场景的实践
Generator-Evaluator重排模型在淘宝流式场景的实践
1114 0