带你读《2022技术人的百宝黑皮书》——生成式重排在内容推荐中的应用实践(7)

简介: 带你读《2022技术人的百宝黑皮书》——生成式重排在内容推荐中的应用实践(7)

带你读《2022技术人的百宝黑皮书》——生成式重排在内容推荐中的应用实践(6) https://developer.aliyun.com/article/1246839?groupCode=taobaotech



上下文感知模型对比


使用pv auc评估模型对返回列表中内容的排序能力,对比的基准为使用线上精排模型的排序分计算得到的结果。这里分别对比了单向LSTM,双向LSTM以及Multihead Self Attention(MSA)等结构。


image.png


带有上下文感知能力的重排模型对topN列表进行打分重排后,离线pv auc相比于使用精排模型的排序分有明显的提升。


使用双向LSTM相比于单向LSTM能够同时捕获到每个位置内容的前后序内容的相互影响,对于pv auc的提高有一定帮助。


MSA使用多头自注意力机制能够从多个不同子空间中捕获到内容之间更细粒度的交互关系,并且我们认为在每平每屋频道的双列feeds流中,LSTM的顺序依赖假设不一定符合用户真实的浏览习惯。


考虑到MSA中完全忽略了内容的位置关系,我们在其中加入了position embedding,相比于不含position embedding的MSA离线pv auc有进一步的提升。


需要注意的是,这里的pv auc能够一定程度上衡量序列评估模型的排序能力,但其并不能真实反应模型线上排序能力的提升。因为如果按照重排模型打分的结果对列表重新排序那么打分时的上下文和最终展现给用户时候内容的上下文就不一致了,这也是我们采用生成式重排方案的原因之一。


不同坑位的点击率对比


image.png


从坑位点击率的变化情况上可以看到首坑的点击率是下跌的,这印证了我们在问题背景中提到的关于DPP使用贪心策略选取内容并不一定能保证整个列表的收益最大化的分析。生成式重排以整个列表的收益最大化为目标,虽然牺牲了首坑点击率,但却提高了整体推荐列表的效果。第4,5,6坑位的点击率提升幅度低于其他坑位,我们认为模型在一定程度上感知到了将用户感兴趣的内容有间隔地展示给用户可以在吸引用户点击的同时引导其浏览更多的内容,从而从整体上产生更多的点击数量。



带你读《2022技术人的百宝黑皮书》——生成式重排在内容推荐中的应用实践(8) https://developer.aliyun.com/article/1246837?groupCode=taobaotech

相关文章
|
12月前
|
Kubernetes 架构师 Java
史上最全对照表:大厂P6/P7/P8 职业技能 薪资水平 成长路线
40岁老架构师尼恩,专注于帮助读者提升技术能力和职业发展。其读者群中,多位成员成功获得知名互联网企业的面试机会。尼恩不仅提供系统化的面试准备指导,还特别针对谈薪酬环节给予专业建议,助力求职者在与HR谈判时更加自信。此外,尼恩还分享了阿里巴巴的职级体系,作为行业内广泛认可的标准,帮助读者更好地理解各职级的要求和发展路径。通过尼恩的技术圣经系列PDF,如《尼恩Java面试宝典》等,读者可以进一步提升自身技术实力,应对职场挑战。关注“技术自由圈”公众号,获取更多资源。
|
机器学习/深度学习 算法 搜索推荐
带你读《2022技术人的百宝黑皮书》——生成式重排在内容推荐中的应用实践(2)
带你读《2022技术人的百宝黑皮书》——生成式重排在内容推荐中的应用实践(2)
236 0
带你读《2022技术人的百宝黑皮书》——生成式重排在内容推荐中的应用实践(2)
探索Linux操作系统的内核模块
本文将深入探讨Linux操作系统的核心组成部分——内核模块,揭示其背后的工作机制和实现方式。我们将从内核模块的定义开始,逐步解析其加载、卸载以及与操作系统其他部分的交互过程,最后探讨内核模块在系统性能优化中的关键作用。
|
算法 搜索推荐
带你读《2022技术人的百宝黑皮书》——生成式重排在内容推荐中的应用实践(3)
带你读《2022技术人的百宝黑皮书》——生成式重排在内容推荐中的应用实践(3)
243 0
|
机器学习/深度学习 存储 算法
Faiss为啥这么快?原来是量化器在做怪!1
Faiss为啥这么快?原来是量化器在做怪!
889 0
|
JavaScript 前端开发 API
事件循环机制(Event Loop)的基本认知
事件循环机制(Event Loop)的基本认知
321 0
事件循环机制(Event Loop)的基本认知
|
机器学习/深度学习 人工智能 算法
Generator-Evaluator重排模型在淘宝流式场景的实践
Generator-Evaluator重排模型在淘宝流式场景的实践
1114 0
|
搜索推荐
ICDE 2023 | DCMT:基于因果纠偏的直接全空间多任务转化率预测模型
ICDE 2023 | DCMT:基于因果纠偏的直接全空间多任务转化率预测模型
1586 0
ICDE 2023 | DCMT:基于因果纠偏的直接全空间多任务转化率预测模型
带你读《2022技术人的百宝黑皮书》——生成式重排在内容推荐中的应用实践(6)
带你读《2022技术人的百宝黑皮书》——生成式重排在内容推荐中的应用实践(6)
197 0
|
搜索推荐
带你读《2022技术人的百宝黑皮书》——生成式重排在内容推荐中的应用实践(8)
带你读《2022技术人的百宝黑皮书》——生成式重排在内容推荐中的应用实践(8)
198 0