pandas实现筛选功能方式【探索AnnData数据格式】

简介: pandas实现筛选功能方式【探索AnnData数据格式】
1. 筛选出数据的指定几行数据

adata.obs[1:10]

微信截图_20230606163453.png

2. 筛选出数据某列为某值的所有数据记录

adata.obs[adata.obs['phenoid'] == 'CD56+_NK']

微信截图_20230606163516.png


3. 多条件匹配时

(注意不要写and, 写成&)

data_many=df[(df['列名1']== ‘列值1')&(df['列名2']==‘列值2')]

adata.obs[(adata.obs['phenoid'] == 'CD56+_NK') & (adata.obs['n_genes_by_counts'] == 542)]

微信截图_20230606163548.png

4. 单列多值匹配时

(注意不要写or, 写成|)

adata.obs[(adata.obs['Label'] == 'Treg') | (adata.obs['Label'] == 'memory CD4 T')]

微信截图_20230606163628.png

相关文章
|
数据可视化 数据挖掘 数据处理
【100天精通Python】Day61:Python 数据分析_Pandas可视化功能:绘制饼图,箱线图,散点图,散点图矩阵,热力图,面积图等(示例+代码)
【100天精通Python】Day61:Python 数据分析_Pandas可视化功能:绘制饼图,箱线图,散点图,散点图矩阵,热力图,面积图等(示例+代码)
518 0
|
2月前
|
数据可视化 数据挖掘 索引
探索Pandas中的explode功能
探索Pandas中的explode功能
93 1
|
2月前
|
SQL 数据挖掘 索引
Pandas数据筛选的5种技巧
Pandas数据筛选的5种技巧
85 1
|
3月前
|
SQL Serverless 数据库
Pandas学习笔记之常用功能
Pandas学习笔记之常用功能
|
JSON 数据可视化 数据挖掘
python数据可视化开发(2):pandas读取Excel的数据格式处理(数据读取、指定列数据、DataFrame转json、数学运算、透视表运算输出)
python数据可视化开发(2):pandas读取Excel的数据格式处理(数据读取、指定列数据、DataFrame转json、数学运算、透视表运算输出)
374 0
|
4月前
|
数据采集 数据挖掘 数据处理
Python数据分析加速器:深度挖掘Pandas与NumPy的高级功能
【7月更文挑战第14天】Python的Pandas和NumPy库是数据分析的核心工具。Pandas以其高效的数据处理能力,如分组操作和自定义函数应用,简化了数据清洗和转换。NumPy则以其多维数组和广播机制实现快速数值计算。两者协同工作,如在DataFrame与NumPy数组间转换进行预处理,提升了数据分析的效率和精度。掌握这两者的高级功能是提升数据科学技能的关键。**
46 0
|
4月前
|
数据挖掘 数据处理 决策智能
Python 数据分析工具箱:深挖 Pandas 与 NumPy 高级功能,驱动智能决策
【7月更文挑战第12天】Python的Pandas和NumPy是数据分析的基石。Pandas提供灵活的数据结构如DataFrame,用于高效处理关系型数据,而NumPy则以多维数组和科学计算功能著称。两者结合,支持数据合并(如`pd.merge`)、时间序列分析(`pd.to_datetime`)和高级数组运算。通过掌握它们的高级特性,能提升数据分析效率,应用于各领域,如金融风险评估、市场分析和医疗预测,助力数据驱动的决策。学习和熟练运用Pandas与NumPy是成为出色数据分析师的关键。
60 0
|
5月前
|
数据可视化 数据挖掘 数据处理
【源码解析】深入Pandas的心脏DataFrame 含十大功能、源码实现与编程知识点
【源码解析】深入Pandas的心脏DataFrame 含十大功能、源码实现与编程知识点
|
5月前
|
数据采集 安全 数据处理
Python采集数据处理:利用Pandas进行组排序和筛选
使用Python的Pandas库,结合亿牛云代理和多线程技术,提升网络爬虫数据处理效率。通过代理IP避免封锁,多线程并发采集,示例代码展示数据分组、排序、筛选及代理IP配置和线程管理。
Python采集数据处理:利用Pandas进行组排序和筛选
|
6月前
|
存储 数据挖掘 数据处理
使用pandas高效读取筛选csv数据
本文介绍了使用Python的Pandas库读取和处理CSV文件。首先,确保安装了Pandas,然后通过`pd.read_csv()`函数读取CSV,可自定义分隔符、列名、索引等。使用`head()`查看数据前几行,`info()`获取基本信息。Pandas为数据分析提供强大支持,是数据科学家的常用工具。