单细胞聚类---浅析监督学习与无监督学习

简介: 单细胞聚类---浅析监督学习与无监督学习

单细胞转录组分析在线性降维后通常要进行聚类,使用到

机器学习的常用方法,主要分为有监督学习[supervised learning]和无监督学习unsupervised learning


监督学习,就是人们常说的分类,通过已有的训练样本(即已知数据以及其对应的输出)去训练得到一个最优模型(这个模型属于某个函数的集合,最优则表示在某个评价准则下是最佳的),再利用这个模型将所有的输入映射为相应的输出,对输出进行简单的判断从而实现分类的目的,也就具有了对未知数据进行分类的能力。在人对事物的认识中,我们从孩子开始就被大人们教授这是鸟啊、那是猪啊、那是房子啊,等等。我们所见到的景物就是输入数据,而大人们对这些景物的判断结果(是房子还是鸟啊)就是相应的输出。当我们见识多了以后,脑子里就慢慢地得到了一些泛化的模型,这就是训练得到的那个(或者那些)函数,从而不需要大人在旁边指点的时候,我们也能分辨的出来哪些是房子,哪些是鸟。监督学习里典型的例子就是KNN、SVM。


无监督学习(也有人叫非监督学习,反正都差不多)则是另一种研究的比较多的学习方法,它与监督学习的不同之处,在于我们事先没有任何训练样本,而需要直接对数据进行建模。这听起来似乎有点不可思议,但是在我们自身认识世界的过程中很多处都用到了无监督学习。比如我们去参观一个画展,我们完全对艺术一无所知,但是欣赏完多幅作品之后,我们也能把它们分成不同的派别(比如哪些更朦胧一点,哪些更写实一些,即使我们不知道什么叫做朦胧派,什么叫做写实派,但是至少我们能把他们分为两个类)。无监督学习里典型的例子就是聚类了。聚类的目的在于把相似的东西聚在一起,而我们并不关心这一类是什么。因此,一个聚类算法通常只需要知道如何计算相似度就可以开始工作了。


那么,什么时候应该采用监督学习,什么时候应该采用非监督学习呢?我也是从一次面试的过程中被问到这个问题以后才开始认真地考虑答案。一种非常简单的回答就是从定义入手,如果我们在分类的过程中有训练集(training data),则可以考虑用监督学习的方法;如果没有训练集,则不可能用监督学习的方法。但是事实上,我们在针对一个现实问题进行解答的过程中,即使我们没有现成的训练集,我们也能够凭借自己的双眼,从待分类的数据中人工标注一些样本,并把他们作为训练集,这样的话就可以把条件改善,用监督学习的方法来做。当然不得不说的是有时候数据表达的会非常隐蔽,也就是说我们手头的信息不是抽象的形式,而是具体的一大堆数字,这样我们很难凭借人本身对它们简单地进行分类。这个说的好像有点不大明白,举个例子说就是在bag-of-words模型的时候,我们利用k-means的方法聚类从而对数据投影,这时候用k-means就是因为我们当前到手的只有一大堆数据,而且是很高维的,当我们想把他们分为50个类的时候,我们已经无力将每个数据标记说这个数应该是哪个类,那个数又应该是哪个类了。所以说遇到这种情况也只有无监督学习能够帮助我们了。那么这么说来,能不能再深入地问下去,如果有训练集(或者说如果我们可以获得到一些训练数据的话),监督学习就会比无监督学习更合适呢?(照我们单纯地想,有高人教总比自己领悟来的准,来的快吧!)我觉得一般来说,是这样的,但是这要具体看看训练数据的获取。本人在最近课题的研究中,手动标注了大量的训练集(当然这些样本基本准确了),而且把样本画在特征空间中发现线性可分性非常好,只是在分类面附近总有一些混淆的数据样本,从而用线性分类器进行分类之后这样样本会被误判。然而,如果用混合高斯模型(GMM)来分的话,这些易混淆的点被正确分类的更多了。对这个现象的一个解释,就是不管是训练集,还是待聚类的数据,并不是所有数据都是相互独立同分布的。换句话说,数据与数据的分布之间存在联系。在我阅读监督学习的大量材料中,大家都没有对训练数据的这一假设(独立同分布)进行说明,直到我阅读到一本书的提示后才恍然大悟。对于不同的场景,正负样本的分布如果会存在偏移(可能是大的偏移,也可能偏移比较小),这样的话用监督学习的效果可能就不如用非监督学习了。

相关文章
|
2月前
|
机器学习/深度学习 运维 自然语言处理
无监督学习
无监督学习是机器学习的一种,无需标注数据即可发现数据内部的模式和结构。其主要任务包括聚类、降维、生成模型、异常检测、数据压缩、模式识别、关联规则学习和自组织映射等,广泛应用于图像分析、自然语言处理等领域。尽管评估模型性能较为困难,但无监督学习能有效揭示数据的内在规律。
|
3月前
|
机器学习/深度学习 调度 知识图谱
TimeDART:基于扩散自回归Transformer 的自监督时间序列预测方法
近年来,深度神经网络成为时间序列预测的主流方法。自监督学习通过从未标记数据中学习,能够捕获时间序列的长期依赖和局部特征。TimeDART结合扩散模型和自回归建模,创新性地解决了时间序列预测中的关键挑战,在多个数据集上取得了最优性能,展示了强大的泛化能力。
111 0
TimeDART:基于扩散自回归Transformer 的自监督时间序列预测方法
|
6月前
|
机器学习/深度学习 数据采集 算法
无监督学习实践:利用Sklearn进行聚类与降维分析
【7月更文第24天】在机器学习的广阔领域中,无监督学习占据着不可小觑的地位,它允许我们在没有标签数据的情况下发现数据中的隐藏结构和模式。本篇文章将深入探讨无监督学习的两大关键技术——聚类与降维分析,并通过使用Python的Scikit-learn库(sklearn)提供实践指南和代码示例,帮助读者掌握这些技术的应用。
514 1
|
8月前
|
文字识别 算法 数据挖掘
基于模型的聚类和R语言中的高斯混合模型
基于模型的聚类和R语言中的高斯混合模型
|
8月前
|
机器学习/深度学习 算法 数据可视化
R语言谱聚类、K-MEANS聚类分析非线性环状数据比较
R语言谱聚类、K-MEANS聚类分析非线性环状数据比较
|
8月前
|
机器学习/深度学习 算法 数据挖掘
有监督学习和无监督学习区别
有监督学习和无监督学习区别
|
8月前
|
运维 数据挖掘 Python
探索LightGBM:监督式聚类与异常检测
探索LightGBM:监督式聚类与异常检测【2月更文挑战第3天】
158 1
|
机器学习/深度学习 自然语言处理 算法
机器学习算法(五):基于企鹅数据集的决策树分类预测
机器学习算法(五):基于企鹅数据集的决策树分类预测
|
机器学习/深度学习 算法 数据挖掘
【机器学习算法】8、聚类算法之DBSCAN(一)
【机器学习算法】8、聚类算法之DBSCAN(一)
296 0
|
机器学习/深度学习 算法 数据挖掘
【机器学习算法】8、聚类算法之DBSCAN(二)
【机器学习算法】8、聚类算法之DBSCAN(二)
131 0