Python的excel表格操作,数据提取分析

简介: Python的excel表格操作,数据提取分析

自己编写了一些表格的操作方法,只需传入表格路径和表的位置,就能在根据自己使用的方法展示不同类型的数据如:字典,列表,字典里套列表,列表里套列表,查询最大行数,在指定的行数插入数据等,有疑问欢迎评论


class Excel:  #表格操作
    def __init__(self,filename,sheetname):  #传入表和表名称
        self.filename = filename
        self.sheetname = sheetname
        self.wb = openpyxl.load_workbook(self.filename)     #生成文件对象,表示要操作的是哪个文件
        self.sheet = self.wb[self.sheetname]
        self.maxrow = self.sheet.max_row
        self.maxcolumn = self.sheet.max_column
#最大行
    def getMaxRow(self):
        maxrow = self.sheet.max_row
        return maxrow
#最大列
    def getMaxColumn(self):
        maxcolumn=self.sheet.max_column
        return maxcolumn
#读取xlsx中某一行的内容,以列表的形式展示
    def listRow(self,rowname):
        list1=[]
        maxcolumn=self.sheet.max_column
        for i in range(maxcolumn):
            row1=self.sheet.cell(row=rowname,column=i+1).value
            list1.append(row1)
        return list1
#读取xesl中的某一行内容,已字典的形式展示,表格的第一行内容为字典中的键
    def dictRow(self, rownum=1):
        dict1={}
        maxcolumn = self.sheet.max_column
        for i in range(maxcolumn):
            key=self.sheet.cell(row=1,column=i+1).value
            row1 = self.sheet.cell(row=rownum, column=i + 1).value
            dict1[key]=row1
        return dict1
#获取某一列的内容  #以列表的显示显示
    def listColumn(self,maxco):
        list1 = []
        for i in range(self.sheet.max_row):
            row1 = self.sheet.cell(row=i+1, column=maxco).value
            list1.append(row1)
        return list1
# 获取某一列的内容  #以字典的形式的显示,第一行的内容是字典的键
    def dictColumn(self,maxco):
        dict1={}
        maxrow = self.sheet.max_row
        for i in range(maxrow):
            key = self.sheet.cell(row=1, column=i + 1).value
            row1 = self.sheet.cell(row=i+1, column=maxco).value
            dict1[key]=row1
        return dict1
#获取所有的数据,以列表里面套字典的方式读取出来
    def dictAll(self):
        list1=[]
        dict2={}
        list2=[]
        for i in range(1,self.maxcolumn+1):
            list1.append(self.sheet.cell(row=1,column=i).value)
        for n in range(2,self.maxrow+1):
            for x in range(1,self.maxcolumn+1):
                dict2[list1[x-1]]=self.sheet.cell(row=n,column=x).value
            list2.append(dict2)
            dict2={}
        return list2
#在指定单元格里写数据:
    def wtxls(self,rowunm,colnum,data):
        self.sheet.cell(row=rowunm,column=colnum).value=data
        self.wb.save(self.filename)
#获取所有的数据,用列表的方式
    def listAll(self):
        row1=[]
        row2=[]
        maxrow=self.sheet.max_row
        maxcol = self.sheet.max_column
        for i in range(1,maxrow):
            for x in range(maxcol):
                row1.append(self.sheet.cell(row=i + 1, column=x + 1).value)
            row2.append(row1)
            row1=[]
        return row2
#获取所有行的内容 但是指定列
    def listData(self,startCol,endCol):
        row1 = []
        row2 = []
        for i in range(1, self.sheet.max_row):
            for x in range(startCol,endCol+1):
                row1.append(self.sheet.cell(row=i + 1, column=x).value)
            row2.append(row1)
            row1 = []
        return row2


表格操作不管是对开发还是测试都是很重要的,测试可以把数据存储到表格里,通过ddt数据驱动来进行自动化测试,后端开发可以将表格的内容加入至数据库,或者是提取表格内容分析然后得出结果返回给前端等等。有不懂的或者是有疑问的可以评论,看到会即时回复,后续会对函数的用法已经如何带入到自动化测试中做一个解释


相关文章
|
27天前
|
缓存 Rust 算法
从混沌到秩序:Python的依赖管理工具分析
Python 的依赖管理工具一直没有标准化,主要原因包括历史发展的随意性、社区的分散性、多样化的使用场景、向后兼容性的挑战、缺乏统一治理以及生态系统的快速变化。依赖管理工具用于处理项目中的依赖关系,确保不同环境下的依赖项一致性,避免软件故障和兼容性问题。常用的 Python 依赖管理工具如 pip、venv、pip-tools、Pipenv、Poetry 等各有优缺点,选择时需根据项目需求权衡。新工具如 uv 和 Pixi 在性能和功能上有所改进,值得考虑。
84 35
|
1月前
|
机器学习/深度学习 数据可视化 数据挖掘
使用Python实现基于矩阵分解的长期事件(MFLEs)时间序列分析
在现代数据分析中,高维时间序列数据的处理和预测极具挑战性。基于矩阵分解的长期事件(MFLEs)分析技术应运而生,通过降维和时间序列特性结合,有效应对大规模数据。MFLE利用矩阵分解提取潜在特征,降低计算复杂度,过滤噪声,并发现主要模式。相比传统方法如ARIMA和深度学习模型如LSTM,MFLE在多变量处理、计算效率和可解释性上更具优势。通过合理应用MFLE,可在物联网、金融等领域获得良好分析效果。
64 0
使用Python实现基于矩阵分解的长期事件(MFLEs)时间序列分析
|
28天前
|
数据采集 数据可视化 数据挖掘
金融波动率的多模型建模研究:GARCH族与HAR模型的Python实现与对比分析
本文探讨了金融资产波动率建模中的三种主流方法:GARCH、GJR-GARCH和HAR模型,基于SPY的实际交易数据进行实证分析。GARCH模型捕捉波动率聚类特征,GJR-GARCH引入杠杆效应,HAR整合多时间尺度波动率信息。通过Python实现模型估计与性能比较,展示了各模型在风险管理、衍生品定价等领域的应用优势。
251 66
金融波动率的多模型建模研究:GARCH族与HAR模型的Python实现与对比分析
|
18天前
|
并行计算 安全 Java
Python GIL(全局解释器锁)机制对多线程性能影响的深度分析
在Python开发中,GIL(全局解释器锁)一直备受关注。本文基于CPython解释器,探讨GIL的技术本质及其对程序性能的影响。GIL确保同一时刻只有一个线程执行代码,以保护内存管理的安全性,但也限制了多线程并行计算的效率。文章分析了GIL的必要性、局限性,并介绍了多进程、异步编程等替代方案。尽管Python 3.13计划移除GIL,但该特性至少要到2028年才会默认禁用,因此理解GIL仍至关重要。
97 16
Python GIL(全局解释器锁)机制对多线程性能影响的深度分析
|
6天前
|
数据采集 数据安全/隐私保护 Python
从零开始:用Python爬取网站的汽车品牌和价格数据
在现代化办公室中,工程师小李和产品经理小张讨论如何获取懂车帝网站的汽车品牌和价格数据。小李提出使用Python编写爬虫,并通过亿牛云爬虫代理避免被封禁。代码实现包括设置代理、请求头、解析网页内容、多线程爬取等步骤,确保高效且稳定地抓取数据。小张表示理解并准备按照指导操作。
从零开始:用Python爬取网站的汽车品牌和价格数据
|
1月前
|
数据可视化 算法 数据挖掘
Python时间序列分析工具Aeon使用指南
**Aeon** 是一个遵循 scikit-learn API 风格的开源 Python 库,专注于时间序列处理。它提供了分类、回归、聚类、预测建模和数据预处理等功能模块,支持多种算法和自定义距离度量。Aeon 活跃开发并持续更新至2024年,与 pandas 1.4.0 版本兼容,内置可视化工具,适合数据探索和基础分析任务。尽管在高级功能和性能优化方面有提升空间,但其简洁的 API 和完整的基础功能使其成为时间序列分析的有效工具。
80 37
Python时间序列分析工具Aeon使用指南
|
1天前
|
算法 Serverless 数据处理
从集思录可转债数据探秘:Python与C++实现的移动平均算法应用
本文探讨了如何利用移动平均算法分析集思录提供的可转债数据,帮助投资者把握价格趋势。通过Python和C++两种编程语言实现简单移动平均(SMA),展示了数据处理的具体方法。Python代码借助`pandas`库轻松计算5日SMA,而C++代码则通过高效的数据处理展示了SMA的计算过程。集思录平台提供了详尽且及时的可转债数据,助力投资者结合算法与社区讨论,做出更明智的投资决策。掌握这些工具和技术,有助于在复杂多变的金融市场中挖掘更多价值。
22 12
|
1月前
|
机器学习/深度学习 运维 数据可视化
Python时间序列分析:使用TSFresh进行自动化特征提取
TSFresh 是一个专门用于时间序列数据特征自动提取的框架,支持分类、回归和异常检测等机器学习任务。它通过自动化特征工程流程,处理数百个统计特征(如均值、方差、自相关性等),并通过假设检验筛选显著特征,提升分析效率。TSFresh 支持单变量和多变量时间序列数据,能够与 scikit-learn 等库无缝集成,适用于大规模时间序列数据的特征提取与模型训练。其工作流程包括数据格式转换、特征提取和选择,并提供可视化工具帮助理解特征分布及与目标变量的关系。
75 16
Python时间序列分析:使用TSFresh进行自动化特征提取
|
7天前
|
文字识别 BI
【图片型PDF】批量识别扫描件PDF指定区域局部位置内容,将识别内容导出Excel表格或批量改名文件,基于阿里云OCR对图片型PDF识别改名案例实现
在医疗和政务等领域,图片型PDF文件(如病历、报告、公文扫描件)的处理需求广泛。通过OCR技术识别这些文件中的文字信息,提取关键内容并保存为表格,极大提高了信息管理和利用效率。本文介绍一款工具——咕嘎批量OCR系统,帮助用户快速处理图片型PDF文件,支持区域识别、内容提取、导出表格及批量改名等功能。下载工具后,按步骤选择处理模式、进行区域采样、批量处理文件,几分钟内即可高效完成数百个文件的处理。
49 8
|
1月前
|
数据采集 Web App开发 数据可视化
Python用代理IP获取抖音电商达人主播数据
在当今数字化时代,电商直播成为重要的销售模式,抖音电商汇聚了众多达人主播。了解这些主播的数据对于品牌和商家至关重要。然而,直接从平台获取数据并非易事。本文介绍如何使用Python和代理IP高效抓取抖音电商达人主播的关键数据,包括主播昵称、ID、直播间链接、观看人数、点赞数和商品列表等。通过环境准备、代码实战及数据处理与可视化,最终实现定时任务自动化抓取,为企业决策提供有力支持。

热门文章

最新文章

推荐镜像

更多