python爬虫中多线程的实现方式

简介: python爬虫中多线程的实现方式

在日常爬虫工作中,我们有时候会使用单线程或多线程,单线程和多线程进行数据抓取结果还是大有不同的。当单线程python爬虫已经不能满足企业需求时,很多程序员会进行改代码或者增加服务器数量,这样虽说也能达到效果,但是对于人力物力也是一笔不小的消耗。如果是技术牛点的,正常都会自己重新改写多线程代码来实现海量数据的获取。但是要值得注意的事,如果多线程没调配好可能连单线程的效率都比不上。本次就和大家一起聊一聊单线程多线程的一些需要注意的事项。
知识点
线程也叫轻量级进程,是操作系统能够进行运算调度的最小单位,它被包含在进程之中,是进程中的实际运作单位。线程自己不拥有系统资源,只拥有一点在运行中必不可少的资源,但它可与同属的一个进程的其它线程共享进程所拥有的全部资源。一个线程可以创建和撤销另一个线程,同一进程中的多个线程之间可以并发执行。这里简单的举例下单线程和多线程之间的差别
单线程
``import time

def task(url):
s = url.split('_')[-1]
time.sleep(int(s)) #这里模拟请求等待

urls = ['url_1', 'url_2', 'url_3']
start = time.time()
for url in urls:
task(url)
end = time.time()
print(end - start)

6.013520002365112


多线程
import threading
import time


def task(url):
    s = url.split('_')[-1]
    time.sleep(int(s))


ts = []
urls = ['url_1', 'url_2', 'url_3']
start = time.time()

for url in urls:
    t = threading.Thread(target=task, args=(url,))
    t.start()
    ts.append(t)

for t in ts:
    t.join()


end = time.time()
print(end - start)

# 3.005527973175049
这时候我们就能看到多线程的优势了,虽然多线程只是在各线程来回切换,但是可以让IO堵塞的时间切换到其他线程做其他的任务,很适合爬虫或者文件的操作。接下来我们通过python实现豆瓣网采集,增加多线程处理,同时对豆瓣返回的内容进行分类统计
```import asyncio
import aiohttp
import threading
from collections import Counter

# 定义一个全局变量,用于存储分类结果
categories = Counter()

# 定义一个函数,用于根据文本内容进行分类
def classify(text):
    # 这里可以使用任何文本分类的方法,例如正则表达式、机器学习等
    # 这里为了简单起见,只使用了简单的字符串匹配
    if "Python" in text:
        return "Python"
    elif "Java" in text:
        return "Java"
    elif "C++" in text:
        return "C++"
    else:
        return "Other"

async def fetch_page(url, proxy):
    # 创建一个 aiohttp 的 ClientSession 对象,并指定代理IP和端口
    async with aiohttp.ClientSession(proxy=proxy) as session:
        # 使用 session.get 方法发送请求,并获取响应对象
        async with session.get(url) as response:
            # 返回响应的文本内容
            return await response.text()

async def main():
    urls = ["https://www.douban.com//s?wd=" + str(i) for i in range(10)] # 生成十个豆瓣搜索网址

    # 假设有一个文件 16yun.txt,每行存储一个代理host和端口,例如 www.16yun.cn:3333
    # 读取文件中的所有代理,并存储在一个列表中
    with open("16yun.txt") as f:
        proxies = [line.strip() for line in f]

    tasks = [] # 创建一个空列表,用于存储 task 对象

    # 遍历 urls 和 proxies 列表,为每个 url 配对一个 proxy,并创建 task 对象
    for url, proxy in zip(urls, proxies):
        task = asyncio.create_task(fetch_page(url, proxy))
        tasks.append(task)

    results = await asyncio.gather(*tasks) # 同时运行所有 task 并获取结果

    # 创建一个线程池,用于执行分类任务
    pool = threading.ThreadPoolExecutor(max_workers=4)

    for result in results:
        print(result[:100]) # 打印每个网页的前 100 个字符

        # 使用线程池提交一个分类任务,并更新全局变量 categories
        category = pool.submit(classify, result).result()
        categories[category] += 1

    # 关闭线程池并等待所有任务完成
    pool.shutdown(wait=True)

    # 打印最终的分类结果
    print(categories)

asyncio.run(main()) # 运行主协程
相关文章
|
10天前
|
数据采集 存储 XML
Python爬虫定义入门知识
Python爬虫是用于自动化抓取互联网数据的程序。其基本概念包括爬虫、请求、响应和解析。常用库有Requests、BeautifulSoup、Scrapy和Selenium。工作流程包括发送请求、接收响应、解析数据和存储数据。注意事项包括遵守Robots协议、避免过度请求、处理异常和确保数据合法性。Python爬虫强大而灵活,但使用时需遵守法律法规。
|
11天前
|
数据采集 缓存 定位技术
网络延迟对Python爬虫速度的影响分析
网络延迟对Python爬虫速度的影响分析
|
12天前
|
数据采集 Web App开发 监控
高效爬取B站评论:Python爬虫的最佳实践
高效爬取B站评论:Python爬虫的最佳实践
|
10天前
|
并行计算 数据处理 调度
Python中的并发编程:探索多线程与多进程的奥秘####
本文深入探讨了Python中并发编程的两种主要方式——多线程与多进程,通过对比分析它们的工作原理、适用场景及性能差异,揭示了在不同应用需求下如何合理选择并发模型。文章首先简述了并发编程的基本概念,随后详细阐述了Python中多线程与多进程的实现机制,包括GIL(全局解释器锁)对多线程的影响以及多进程的独立内存空间特性。最后,通过实例演示了如何在Python项目中有效利用多线程和多进程提升程序性能。 ####
|
13天前
|
数据采集 存储 JSON
Python爬虫开发中的分析与方案制定
Python爬虫开发中的分析与方案制定
|
18天前
|
数据采集 JSON 测试技术
Python爬虫神器requests库的使用
在现代编程中,网络请求是必不可少的部分。本文详细介绍 Python 的 requests 库,一个功能强大且易用的 HTTP 请求库。内容涵盖安装、基本功能(如发送 GET 和 POST 请求、设置请求头、处理响应)、高级功能(如会话管理和文件上传)以及实际应用场景。通过本文,你将全面掌握 requests 库的使用方法。🚀🌟
38 7
|
18天前
|
数据采集 Web App开发 JavaScript
爬虫策略规避:Python爬虫的浏览器自动化
爬虫策略规避:Python爬虫的浏览器自动化
|
18天前
|
数据采集 存储 XML
Python实现网络爬虫自动化:从基础到实践
本文将介绍如何使用Python编写网络爬虫,从最基础的请求与解析,到自动化爬取并处理复杂数据。我们将通过实例展示如何抓取网页内容、解析数据、处理图片文件等常用爬虫任务。
109 1
|
4天前
|
数据采集 Java Python
爬取小说资源的Python实践:从单线程到多线程的效率飞跃
本文介绍了一种使用Python从笔趣阁网站爬取小说内容的方法,并通过引入多线程技术大幅提高了下载效率。文章首先概述了环境准备,包括所需安装的库,然后详细描述了爬虫程序的设计与实现过程,包括发送HTTP请求、解析HTML文档、提取章节链接及多线程下载等步骤。最后,强调了性能优化的重要性,并提醒读者遵守相关法律法规。
28 0
|
4天前
|
数据采集 JavaScript 程序员
探索CSDN博客数据:使用Python爬虫技术
本文介绍了如何利用Python的requests和pyquery库爬取CSDN博客数据,包括环境准备、代码解析及注意事项,适合初学者学习。
32 0
下一篇
无影云桌面