基于决策树的智能网络安全入侵检测模型

本文涉及的产品
云防火墙,500元 1000GB
简介: 基于决策树的智能网络安全入侵检测模型

学习目标:

An intelligent tree-based intrusion detection model for cyber security

(一种基于决策树的智能网络安全入侵检测模型)


一种基于图模型的网络攻击溯源方法


学习内容:

An intelligent tree-based intrusion detection model for cyber security


(一种基于决策树的智能网络安全入侵检测模型)


基于树的分类模型可以预测特定的网络活动是“正常”还是“攻击”。在树的每个节点上做出决策,直到到达叶节点。数据点的类别(即正常或攻击)在叶节点中确定。换句话说,树节点代表一个特征,每条边或分支代表根据每个特征获得的信息做出的决策,每个叶子代表一个类。


该模型旨在提高预测精度并降低计算复杂度。


考虑到安全特征的排序和选择的基于树的入侵检测模型是重点,可以提高预测精度并最小化计算的复杂性


高维的安全特征时,过拟合的高方差、高复杂性和低预测精度是基于树的模型的常见限制


该论文模型


350db0c1030144babef33540ddbb1b21.png

关于上图模型中的序号说明


UNSW-NB 15数据集,由 42 个不包括类别标签的特征组成(即 0 表示正常记录,1 表示攻击记录)

数据集中的所有特征都被缩放(即标准化)

a542154fe7d1443d9c7cfa1493a6bcba.png


One Hot Encoding编码,使用的是python的sklearn 库函数的LabelEncoder 编码器


3.采用的是Gini 指数计算数据的特征值的熵,最后算出排序,选择阈值 0.02,特征数量减少到 19 个,降低了时间处理和过度拟合方面的计算复杂性


2e63377ae1d94cc0b6628e1850cac6bf.png


4.实验一、训练论文的分类器效果

5.实验二、在相同的环境相同的数据集下,对比于传统的ML model :k-NN, SVM,LR,NB


下载数据集

UNSW-NB15数据集https://research.unsw.edu.au/projects/unsw-nb15-dataset


5818271d5d6c4441871d2673813cdc7e.png

c54c752122cd4489b23403262bd495b7.png



加载数据集,


d241e45d78fd4b429323902606f95ed5.png


报错:数据类型不匹配,由于数据是’String’型的,需要将’String’型转化float数值型


755afb76e9fb423da6112dce84759362.png


进行矩阵运算时涉及的矩阵维度太大,由于没有好一点儿的服务器,我本机电脑分配的内存不够用,加载不了,模型训练不了。


95d2ab250495445a90fcac4a60e6d4ca.png


一种基于图模型的网络攻击溯源方法


对于减轻混合SDN中地址欺骗攻击设想,采用VLANs的划分出多个虚拟局域网,把地址欺骗攻击限制在一个VLAN中


102caf6e940e4807bbfa3d3a419cbdb4.png

首先通过手动配置Open- vSwitch的VLAN, 实现VLAN的标记。


上图网络拓扑中描绘了两个VLAN(VID 10、20 ),每个交换机有一个主机成员。每个交换机的两个端口需要配置为各自VLAN的接入端口,第三个端口必须配置为中继端口,允许两个VLAN(10、20)通过。主机H1和H3位于eth-1,H2和H4位于eth-2


用于将端口配置为接入端口或中继端口的OVS命令如下:


将端口配置为接入端口,并用VID = vlan标记传入数据包:

ovs-vsctl set port [port] tag = vlan

将端口配置为中继端口,允许VIDs= vlan1、vlan2通过:

ovs-vs CTL set port[port]trunks = VLAN 1,vlan2

同时必须向对应于传统L2交换的交换机添加流条目(action= "NORMAL "),以便学习必要的MAC地址,并将分组转发出正确的端口。


一旦上述流条目被添加到两台交换机,我们就可以验证主机之间的ping可达性。


对于流动作,在RYU开放流1.3协议API 中提供了专门的类进行VLAN标签的标记,匹配,取消标记,如下所列


标记:OFPActionPushVlan(ether type = 33024,type =None,len=None):将新的Vlan标签推入数据包,默认VID = 0


取消标记:OFPActionPopVlan(type=None,len=None):删除最外层的Vlan标记


匹配:of match(VLAN _ VID = 0x 1000 | " VID "):匹配包含VID = "vid "(整数值)的标记数据包。


实验的前提是,网络拓扑已知且没有环路,采用的是基于端口的VLANs分类


拓扑如下:


056be7e041934752abd1b1e84f4c884b.png


“黄色”路由器显示的节点不支持VLAN,因此不会生成任何“标记”流量。所以H1和H6不属于任何VLAN。但是它们的流量在到达目的节点之前需要通过VLAN感知交换机进行中继。通过实施这种拓扑,我们可以模拟在大型网络中,使用VLANs设计和划分一个小型子网来减轻地址欺骗攻击,


流程如下:


6dd02b3c75b442888bea48d85e751eab.png


参考论文:

[1] Al-Omari M, Rawashdeh M, Qutaishat F, et al. An intelligent tree-based intrusion detection model for cyber security[J]. Journal of Network and Systems Management, 2021, 29(2): 1-18.


[2] 黄克振, 连一峰, 冯登国, 等. 一种基于图模型的网络攻击溯源方法[J]. Journal of Software, 2021, 33(2): 683-698.


[6] R. Vinayakumar, K. P. Soman and P. Poornachandran, “Applying convolutional neural network for network intrusion detection,” 2017 International Conference on Advances in Computing, Communications and Informatics (ICACCI), 2017, pp. 1222-1228, doi: 10.1109/ICACCI.2017.8126009.


[7] R. Vinayakumar, M. Alazab, K. P. Soman, P. Poornachandran, A. Al-Nemrat and S. Venkatraman, “Deep Learning Approach for Intelligent Intrusion Detection System,” in IEEE Access, vol. 7, pp. 41525-41550, 2019, doi: 10.1109/ACCESS.2019.2895334.


[8] R. Vinayakumar, K. P. Soman and P. Poornachandran, “Evaluating effectiveness of shallow and deep networks to intrusion detection system,” 2017 International Conference on Advances in Computing, Communications and Informatics (ICACCI), 2017, pp. 1282-1289, doi: 10.1109/ICACCI.2017.8126018.


综述/调查:

[3] A. L. Buczak and E. Guven, “A Survey of Data Mining and Machine Learning Methods for Cyber Security Intrusion Detection,” in IEEE Communications Surveys & Tutorials, vol. 18, no. 2, pp. 1153-1176, Secondquarter 2016, doi: 10.1109/COMST.2015.2494502.


[4] P. Mishra, V. Varadharajan, U. Tupakula and E. S. Pilli, “A Detailed Investigation and Analysis of Using Machine Learning Techniques for Intrusion Detection,” in IEEE Communications Surveys & Tutorials, vol. 21, no. 1, pp. 686-728, Firstquarter 2019, doi: 10.1109/COMST.2018.2847722.


[5] A. Nisioti, A. Mylonas, P. D. Yoo and V. Katos, “From Intrusion Detection to Attacker Attribution: A Comprehensive Survey of Unsupervised Methods,” in IEEE Communications Surveys & Tutorials, vol. 20, no. 4, pp. 3369-3388, Fourthquarter 2018, doi: 10.1109/COMST.2018.2854724.


–end–


相关文章
|
5天前
|
存储 网络协议 安全
30 道初级网络工程师面试题,涵盖 OSI 模型、TCP/IP 协议栈、IP 地址、子网掩码、VLAN、STP、DHCP、DNS、防火墙、NAT、VPN 等基础知识和技术,帮助小白们充分准备面试,顺利踏入职场
本文精选了 30 道初级网络工程师面试题,涵盖 OSI 模型、TCP/IP 协议栈、IP 地址、子网掩码、VLAN、STP、DHCP、DNS、防火墙、NAT、VPN 等基础知识和技术,帮助小白们充分准备面试,顺利踏入职场。
18 2
|
8天前
|
网络虚拟化
生成树协议(STP)及其演进版本RSTP和MSTP,旨在解决网络中的环路问题,提高网络的可靠性和稳定性
生成树协议(STP)及其演进版本RSTP和MSTP,旨在解决网络中的环路问题,提高网络的可靠性和稳定性。本文介绍了这三种协议的原理、特点及区别,并提供了思科和华为设备的命令示例,帮助读者更好地理解和应用这些协议。
24 4
|
5天前
|
运维 网络协议 算法
7 层 OSI 参考模型:详解网络通信的层次结构
7 层 OSI 参考模型:详解网络通信的层次结构
16 1
|
13天前
|
SQL 安全 算法
网络安全的屏障与钥匙:漏洞防护与加密技术解析
【10月更文挑战第31天】在数字世界的海洋中,网络安全是航船的坚固屏障,而信息安全则是守护宝藏的金钥匙。本文将深入探讨网络安全的薄弱环节——漏洞,以及如何通过加密技术加固这道屏障。从常见网络漏洞的类型到最新的加密算法,我们不仅提供理论知识,还将分享实用的安全实践技巧,帮助读者构建起一道更加坚不可摧的防线。
22 1
|
16天前
|
网络协议 算法 网络性能优化
计算机网络常见面试题(一):TCP/IP五层模型、TCP三次握手、四次挥手,TCP传输可靠性保障、ARQ协议
计算机网络常见面试题(一):TCP/IP五层模型、应用层常见的协议、TCP与UDP的区别,TCP三次握手、四次挥手,TCP传输可靠性保障、ARQ协议、ARP协议
|
22天前
|
机器学习/深度学习 人工智能 算法
【车辆车型识别】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+算法模型
车辆车型识别,使用Python作为主要编程语言,通过收集多种车辆车型图像数据集,然后基于TensorFlow搭建卷积网络算法模型,并对数据集进行训练,最后得到一个识别精度较高的模型文件。再基于Django搭建web网页端操作界面,实现用户上传一张车辆图片识别其类型。
65 0
【车辆车型识别】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+算法模型
|
1月前
|
机器学习/深度学习 编解码 算法
【深度学习】经典的深度学习模型-01 开山之作:CNN卷积神经网络LeNet-5
【深度学习】经典的深度学习模型-01 开山之作:CNN卷积神经网络LeNet-5
39 0
|
1月前
|
存储 分布式计算 负载均衡
|
5天前
|
存储 SQL 安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
【10月更文挑战第39天】在数字化时代,网络安全和信息安全成为了我们生活中不可或缺的一部分。本文将介绍网络安全漏洞、加密技术和安全意识等方面的内容,帮助读者更好地了解网络安全的重要性,并提供一些实用的技巧和方法来保护自己的信息安全。
15 2
|
6天前
|
安全 网络安全 数据安全/隐私保护
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
【10月更文挑战第38天】本文将探讨网络安全与信息安全的重要性,包括网络安全漏洞、加密技术和安全意识等方面。我们将通过代码示例和实际操作来展示如何保护网络和信息安全。无论你是个人用户还是企业,都需要了解这些知识以保护自己的网络安全和信息安全。