Apache Kafka - ConsumerInterceptor 实战(2)

简介: Apache Kafka - ConsumerInterceptor 实战(2)

20191116123525638.png



Pre

Apache Kafka - ConsumerInterceptor 实战 (1) 用代码的方式实现了ConsumerInterceptor , 接下来我们用 配置的方式来实现一下 。


思路

如何找配置类

KafkaProperties

5b0110c7e372455ea98d692ededf89e8.png


有些属性是很明显的有的,其他没有的一般都在 Map里


8859f6b86d47461fa81376f2ff8bd6d5.png


那map的 key value 从哪里找呢?

找原生的配置 Kafka Consumer的 都在 ConsumerConfig


979eab0aec934f2e89a8b6ab7915278e.png


找到

public static final String INTERCEPTOR_CLASSES_CONFIG = "interceptor.classes";


c81113a14b844dd897e09de4b6d27424.png

OK,继续


示例

配置文件



652452561ed74b6b945782037ca78041.png


自定义 拦截器

package net.zf.module.system.kafka.interceptor;
import lombok.extern.slf4j.Slf4j;
import org.apache.kafka.clients.consumer.ConsumerInterceptor;
import org.apache.kafka.clients.consumer.ConsumerRecords;
import org.apache.kafka.clients.consumer.OffsetAndMetadata;
import org.apache.kafka.common.TopicPartition;
import org.springframework.stereotype.Component;
import java.util.Map;
/**
 * @author artisan
 */
@Slf4j
@Component
public class FailureRateInterceptor implements ConsumerInterceptor<Object, Object> {
    /**
     * 消息消费前的拦截处理
     *
     * @param consumerRecords
     * @return
     */
    @Override
    public ConsumerRecords<Object, Object> onConsume(ConsumerRecords<Object, Object> consumerRecords) {
        // TODO
        log.info("FailureRateInterceptor#onConsume");
        // 根据设定的规则计算失败率,并进行判断是否跳过消息的消费
        // 返回ConsumerRecords对象, 继续执行下游的消费逻辑或者直接返回空的ConsumerRecords对象 (ConsumerRecords.EMPTY)
        return consumerRecords;
    }
    /**
     * 消息提交前进行拦截处理
     *
     * @param map
     */
    @Override
    public void onCommit(Map<TopicPartition, OffsetAndMetadata> map) {
        log.info("FailureRateInterceptor#onCommit");
    }
    /**
     * 拦截器关闭前进行拦截处理(如果有的话)
     */
    @Override
    public void close() {
        log.info("FailureRateInterceptor#close");
    }
    /**
     * 初始化配置(如果有的话)
     *
     * @param map
     */
    @Override
    public void configure(Map<String, ?> map) {
        log.info("FailureRateInterceptor#configure");
    }
}


使用


ccf608e13a1c4cb9b23b27875ee4ea1d.png


测试

启动服务,发送消息,进行消费


405a54138cf049c18878ff2cb3079aa6.png

小结

在Spring Boot中配置Kafka消费者的拦截器需要进行以下步骤:


首先,创建一个拦截器类,实现Kafka的ConsumerInterceptor接口,定义拦截器的逻辑。

在应用的配置文件(例如application.properties或application.yml)中,添加拦截器相关的配置项,其中包括设置interceptor.class属性为拦截器类的全限定名。

下面是一个示例,演示如何在Spring Boot中配置Kafka消费者的拦截器:


创建拦截器类:

@Slf4j
@Component
public class MyConsumerInterceptor implements ConsumerInterceptor<Object, Object> {
    @Override
    public ConsumerRecords<Object, Object> onConsume(ConsumerRecords<Object, Object> records) {
        // 在消息消费前的处理逻辑
        // ...
        return records;
    }
    @Override
    public void onCommit(Map<TopicPartition, OffsetAndMetadata> offsets) {
        // 在消息提交前的处理逻辑
        // ...
    }
    @Override
    public void close() {
        // 拦截器关闭前的处理逻辑
        // ...
    }
    @Override
    public void configure(Map<String, ?> configs) {
        // 初始化配置的处理逻辑
        // ...
    }
}


  1. 在应用的配置文件中设置拦截器相关的配置项:
spring.kafka.consumer.properties.interceptor.classes=com.example.MyConsumerInterceptor


或者在application.yml文件中:

spring:
  kafka:
    consumer:
      properties:
        interceptor.classes: com.example.MyConsumerInterceptor


这样配置之后,Spring Boot会自动创建Kafka消费者,并将指定的拦截器应用于消费者。在消费者处理消息的过程中,拦截器的方法将会被调用,可以在这些方法中编写自定义的逻辑来处理消息或拦截操作。

相关文章
|
21天前
|
消息中间件 安全 Kafka
Apache Kafka安全加固指南:保护你的消息传递系统
【10月更文挑战第24天】在现代企业环境中,数据的安全性和隐私保护至关重要。Apache Kafka作为一款广泛使用的分布式流处理平台,其安全性直接影响着业务的稳定性和用户数据的安全。作为一名资深的Kafka使用者,我深知加强Kafka安全性的重要性。本文将从个人角度出发,分享我在实践中积累的经验,帮助读者了解如何有效地保护Kafka消息传递系统的安全性。
48 7
|
21天前
|
消息中间件 数据挖掘 Kafka
Apache Kafka流处理实战:构建实时数据分析应用
【10月更文挑战第24天】在当今这个数据爆炸的时代,能够快速准确地处理实时数据变得尤为重要。无论是金融交易监控、网络行为分析还是物联网设备的数据收集,实时数据处理技术都是不可或缺的一部分。Apache Kafka作为一款高性能的消息队列系统,不仅支持传统的消息传递模式,还提供了强大的流处理能力,能够帮助开发者构建高效、可扩展的实时数据分析应用。
64 5
|
21天前
|
消息中间件 存储 监控
构建高可用性Apache Kafka集群:从理论到实践
【10月更文挑战第24天】随着大数据时代的到来,数据传输与处理的需求日益增长。Apache Kafka作为一个高性能的消息队列服务,因其出色的吞吐量、可扩展性和容错能力而受到广泛欢迎。然而,在构建大规模生产环境下的Kafka集群时,保证其高可用性是至关重要的。本文将从个人实践经验出发,详细介绍如何构建一个高可用性的Kafka集群,包括集群规划、节点配置以及故障恢复机制等方面。
54 4
|
21天前
|
消息中间件 监控 大数据
优化Apache Kafka性能:最佳实践与调优策略
【10月更文挑战第24天】作为一名已经对Apache Kafka有所了解并有实际使用经验的开发者,我深知在大数据处理和实时数据流传输中,Kafka的重要性不言而喻。然而,在面对日益增长的数据量和业务需求时,如何保证系统的高性能和稳定性成为了摆在我们面前的一个挑战。本文将从我的个人视角出发,分享一些关于如何通过合理的配置和调优来提高Kafka性能的经验和建议。
53 4
|
19天前
|
消息中间件 Ubuntu Java
Ubuntu系统上安装Apache Kafka
Ubuntu系统上安装Apache Kafka
|
20天前
|
消息中间件 监控 Kafka
Apache Kafka 成为处理实时数据流的关键组件。Kafka Manager 提供了一个简洁的 Web 界面
随着大数据技术的发展,Apache Kafka 成为处理实时数据流的关键组件。Kafka Manager 提供了一个简洁的 Web 界面,方便管理和监控 Kafka 集群。本文详细介绍了 Kafka Manager 的部署步骤和基本使用方法,包括配置文件的修改、启动命令、API 示例代码等,帮助你快速上手并有效管理 Kafka 集群。
41 0
|
3月前
|
存储 消息中间件 Java
Apache Flink 实践问题之原生TM UI日志问题如何解决
Apache Flink 实践问题之原生TM UI日志问题如何解决
46 1
|
1月前
|
SQL Java API
Apache Flink 2.0-preview released
Apache Flink 社区正积极筹备 Flink 2.0 的发布,这是自 Flink 1.0 发布以来的首个重大更新。Flink 2.0 将引入多项激动人心的功能和改进,包括存算分离状态管理、物化表、批作业自适应执行等,同时也包含了一些不兼容的变更。目前提供的预览版旨在让用户提前尝试新功能并收集反馈,但不建议在生产环境中使用。
596 13
Apache Flink 2.0-preview released
|
1月前
|
存储 缓存 算法
分布式锁服务深度解析:以Apache Flink的Checkpointing机制为例
【10月更文挑战第7天】在分布式系统中,多个进程或节点可能需要同时访问和操作共享资源。为了确保数据的一致性和系统的稳定性,我们需要一种机制来协调这些进程或节点的访问,避免并发冲突和竞态条件。分布式锁服务正是为此而生的一种解决方案。它通过在网络环境中实现锁机制,确保同一时间只有一个进程或节点能够访问和操作共享资源。
68 3
|
2月前
|
SQL 消息中间件 关系型数据库
Apache Doris Flink Connector 24.0.0 版本正式发布
该版本新增了对 Flink 1.20 的支持,并支持通过 Arrow Flight SQL 高速读取 Doris 中数据。

推荐镜像

更多