带你读《云原生机密计算最佳实践白皮书》——部署TensorFlow Serving在线推理服务(3)

简介: 带你读《云原生机密计算最佳实践白皮书》——部署TensorFlow Serving在线推理服务(3)

《云原生机密计算最佳实践白皮书》——07解决方案——Intel Confidential Computing Zoo: Intel机密计算开源解决方案——部署TensorFlow Serving在线推理服务(2) https://developer.aliyun.com/article/1230818?groupCode=aliyun_linux



步骤二:部署Anolis OS SGX端

1、下载本实践所用的TensorFlow Serving脚本代码

git clone https://github.com/intel/confifidential-computing-zoo.git
cd confifidential-computing-zoo/cczoo/tensorflflow-serving-cluster/tensorflflow-serving/docker/
tf_serving/

2、复制客户端的 ssl_confifigure 和 models 目录到Anolis OS SGX中的 tf_serving 目录中

scp -r tf@192.168.XX.XX:/<Tensorflflow_Serving>/client/models <Tensorflflow_Serving>/dock
er/tf_serving
scp -r tf@192.168.XX.XX<Tensorflflow_Serving>/client/ssl_confifigure <Tensorflflow_Serving>/
docker/tf_serving

3、创建TensorFlow Serving镜像

用户可以通过下面任意方式获取TensorFlow Serving镜像:

• a. 切换到secrec_prov_server目录

sudo docker pull intelcczoo/tensorflflow_serving:anolis_tensorflflow_serving_latest

• b. 自行编译TensorFlow Serving镜像

sudo ./build_gramine_tf_serving_image.sh image_tag

4、配置域名访问

sudo sh -c 'echo "remote_ip attestation.service.com" >> /etc/hosts' #remote_ip请修改为客户端IP

说明:当客户端与vSGX端部署在同一台ECS实例上, remote_ip 为容器IP

5、运行TensorFlow Serving

cp ssl_confifigure/ssl.cfg .
sudo ./run_gramine_tf_serving.sh -i ${image_id} -p 8500-8501 -m resnet50-v15-fp32 -s ssl.cfg 
-a attestation.service.com:remote_ip

说明: ${image_id} 需修改为TensorFlow Serving的 image id 。 -p 8500-8501为TensorFlow Serving对应主机的端口。 remote_ip 需修改为 secret prov server 所在机器的IP或者容器IP(TF Serving与secretprov sever位于同一台机器)



《云原生机密计算最佳实践白皮书》——07解决方案——Intel Confidential Computing Zoo: Intel机密计算开源解决方案——部署TensorFlow Serving在线推理服务(4) https://developer.aliyun.com/article/1230816?groupCode=aliyun_linux

相关文章
|
11月前
|
Kubernetes 监控 Cloud Native
云原生时代下的应用开发与部署实践
【10月更文挑战第4天】在云原生的浪潮中,开发者和运维人员面临着新的挑战和机遇。本文将通过实际案例,展示如何在云平台上高效地开发、部署和管理应用,同时确保系统的可扩展性和高可用性。我们将深入探讨容器化技术、微服务架构以及持续集成/持续部署(CI/CD)流程的实施策略,旨在为读者提供一套完整的云原生解决方案框架。
|
7月前
|
Cloud Native 安全 Serverless
云原生应用实战:基于阿里云Serverless的API服务开发与部署
随着云计算的发展,Serverless架构日益流行。阿里云函数计算(Function Compute)作为Serverless服务,让开发者无需管理服务器即可运行代码,按需付费,简化开发运维流程。本文从零开始,介绍如何使用阿里云函数计算开发简单的API服务,并探讨其核心优势与最佳实践。通过Python示例,演示创建、部署及优化API的过程,涵盖环境准备、代码实现、性能优化和安全管理等内容,帮助读者快速上手Serverless开发。
|
7月前
|
人工智能 Cloud Native 多模数据库
实力见证!数据管理服务DMS、云原生多模数据库Lindorm荣获“2024技术卓越奖”
实力见证!数据管理服务DMS、云原生多模数据库Lindorm荣获“2024技术卓越奖”
144 1
|
9月前
|
人工智能 缓存 异构计算
云原生AI加速生成式人工智能应用的部署构建
本文探讨了云原生技术背景下,尤其是Kubernetes和容器技术的发展,对模型推理服务带来的挑战与优化策略。文中详细介绍了Knative的弹性扩展机制,包括HPA和CronHPA,以及针对传统弹性扩展“滞后”问题提出的AHPA(高级弹性预测)。此外,文章重点介绍了Fluid项目,它通过分布式缓存优化了模型加载的I/O操作,显著缩短了推理服务的冷启动时间,特别是在处理大规模并发请求时表现出色。通过实际案例,展示了Fluid在vLLM和Qwen模型推理中的应用效果,证明了其在提高模型推理效率和响应速度方面的优势。
云原生AI加速生成式人工智能应用的部署构建
|
10月前
|
Kubernetes Cloud Native Docker
云原生之旅:从传统架构到容器化服务的演变
随着技术的快速发展,云计算已经从简单的虚拟化服务演进到了更加灵活和高效的云原生时代。本文将带你了解云原生的概念、优势以及如何通过容器化技术实现应用的快速部署和扩展。我们将以一个简单的Python Web应用为例,展示如何利用Docker容器进行打包和部署,进而探索Kubernetes如何管理这些容器,确保服务的高可用性和弹性伸缩。
|
10月前
|
Kubernetes Cloud Native 微服务
云原生入门与实践:Kubernetes的简易部署
云原生技术正改变着现代应用的开发和部署方式。本文将引导你了解云原生的基础概念,并重点介绍如何使用Kubernetes进行容器编排。我们将通过一个简易的示例来展示如何快速启动一个Kubernetes集群,并在其上运行一个简单的应用。无论你是云原生新手还是希望扩展现有知识,本文都将为你提供实用的信息和启发性的见解。
|
10月前
|
敏捷开发 Kubernetes Cloud Native
阿里云云原生技术为企业提供了一套高效、灵活的解决方案,支持跨云部署与管理
在多云环境中,阿里云云原生技术为企业提供了一套高效、灵活的解决方案,支持跨云部署与管理。通过容器化、服务网格等技术,实现了应用的一致性与可移植性,简化了多云环境下的资源管理和服务治理,帮助企业应对复杂的云环境挑战,加速数字化转型。
218 5
|
10月前
|
存储 Prometheus 运维
在云原生环境中,阿里云ARMS与Prometheus的集成提供了强大的应用实时监控解决方案
在云原生环境中,阿里云ARMS与Prometheus的集成提供了强大的应用实时监控解决方案。该集成结合了ARMS的基础设施监控能力和Prometheus的灵活配置及社区支持,实现了全面、精准的系统状态、性能和错误监控,提升了应用的稳定性和管理效率。通过统一的数据视图和高级查询功能,帮助企业有效应对云原生挑战,促进业务的持续发展。
250 3
|
9月前
|
运维 监控 Cloud Native
云原生之运维监控实践:使用 taosKeeper 与 TDinsight 实现对 时序数据库TDengine 服务的监测告警
在数字化转型的过程中,监控与告警功能的优化对保障系统的稳定运行至关重要。本篇文章是“2024,我想和 TDengine 谈谈”征文活动的三等奖作品之一,详细介绍了如何利用 TDengine、taosKeeper 和 TDinsight 实现对 TDengine 服务的状态监控与告警功能。作者通过容器化安装 TDengine 和 Grafana,演示了如何配置 Grafana 数据源、导入 TDinsight 仪表板、以及如何设置告警规则和通知策略。欢迎大家阅读。
282 0
|
10月前
|
消息中间件 监控 Cloud Native
云原生架构下的数据一致性挑战与解决方案####
在数字化转型加速的今天,云原生架构以其轻量级、弹性伸缩和高可用性成为企业IT架构的首选。然而,在享受其带来的灵活性的同时,数据一致性问题成为了不可忽视的挑战。本文探讨了云原生环境中数据一致性的复杂性,分析了导致数据不一致的根本原因,并提出了几种有效的解决策略,旨在为开发者和企业提供实践指南,确保在动态变化的云环境中保持数据的完整性和准确性。 ####