带你读《企业级云原生白皮书项目实战》——5.2.3 数据上云(2)

本文涉及的产品
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
简介: 带你读《企业级云原生白皮书项目实战》——5.2.3 数据上云(2)

《企业级云原生白皮书项目实战》——第五章 大数据——5.2 云原生大数据计算服务 MaxCompute——5.2.3 数据上云(1) https://developer.aliyun.com/article/1228555?groupCode=supportservice


5.2.3.1.2 全增量实时一键数据同步MaxCompute方案

此处以MySQL业务数据库为例,假设有大量的数据存储在数据库系统里,需要将数据库中的全量及增量数据同步到MaxCompute中进行数仓分析,数据集成传统方式是通过DataX进行全量同步或者依赖数据库表中有modify_time这种字段进行增量同步。但实际的生产场景中,数据库表里并不一定存在modify_time这种字段,传统的基于jdbc抽取的方式则没办法进行增量同步。

该场景主要抽象为三个核心需求点:

1.全量数据初始化;

2.增量数据实时写入;

3.增量数据和全量数据定时做合并写入新的全量表分区。

image.png

名词解释

Base表

MySQL中的数据库表对应的MaxCompute中的表

Log表

一对源、目的数据源(即对应一个数据同步解决方案),会创建一个log表,命名规则为:__log。如源端数据源为:rds_test、目标数据源为:odps_fifirst,则Log表的表名为:rds_test_odps_-fifirst_log。

一般来说,一个MySQL数据源即对应一个数据库DB,则这里可以理解为Log表和DB是一一对应的。该MySQL DB下的所有表的变化情况,都将记录在这张MaxCompute1Log表中,进一步根据解决方案所设置的Merge周期,定期由Merge任务,将Log表的增量内容合并至Base表。

DB 内的所有表的增量数据,每一行数据所有数据列被当做一个字段整体(_data_-columns_)并附带有相关该行记录的元数据信息,Log表定义如下:

image.png

解决方案原理阐释

为实现上述的三个核心需求,MySQL同步至MaxCompute全增量Merge分为3个阶段:

1.任务配置当天,执行全量数据初始化的离线同步任务。

2.任务配置当天,待全量数据初始化完成后,启动实时同步任务,将增量数据实时同步至MaxCompute Log表。

3.任务配置第二天,Merge任务将Base表全量数据与实时同步任务的增量数据进行Merge,最后将结果写入Base表。默认Merge周期为1天。

需要特别留意,由于目前全增量Merge周期为一天,Base表实际只能查到T-1的全增量完整数据。如果希望提高增全量合并的时效性,例如从一天合并一次改为一小时合并一次,需要在“一键实时同步至MaxCompute”业务流程的第5步(目前该能力灰度中,并非所有用户均可见),“设置表粒度同步规则”中,调整“Base表Merge设置”。截图参考如下:

image.png


《企业级云原生白皮书项目实战》——第五章 大数据——5.2 云原生大数据计算服务 MaxCompute——5.2.3 数据上云(3) https://developer.aliyun.com/article/1228551?groupCode=supportservice

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
相关文章
|
2月前
|
存储 人工智能 Cloud Native
云栖重磅|从数据到智能:Data+AI驱动的云原生数据库
在9月20日2024云栖大会上,阿里云智能集团副总裁,数据库产品事业部负责人,ACM、CCF、IEEE会士(Fellow)李飞飞发表《从数据到智能:Data+AI驱动的云原生数据库》主题演讲。他表示,数据是生成式AI的核心资产,大模型时代的数据管理系统需具备多模处理和实时分析能力。阿里云瑶池将数据+AI全面融合,构建一站式多模数据管理平台,以数据驱动决策与创新,为用户提供像“搭积木”一样易用、好用、高可用的使用体验。
云栖重磅|从数据到智能:Data+AI驱动的云原生数据库
|
3月前
|
SQL 存储 分布式计算
ODPS技术架构深度剖析与实战指南——从零开始掌握阿里巴巴大数据处理平台的核心要义与应用技巧
【10月更文挑战第9天】ODPS是阿里巴巴推出的大数据处理平台,支持海量数据的存储与计算,适用于数据仓库、数据挖掘等场景。其核心组件涵盖数据存储、计算引擎、任务调度、资源管理和用户界面,确保数据处理的稳定、安全与高效。通过创建项目、上传数据、编写SQL或MapReduce程序,用户可轻松完成复杂的数据处理任务。示例展示了如何使用ODPS SQL查询每个用户的最早登录时间。
184 1
|
5月前
|
Cloud Native 安全 大数据
云原生与大数据
【8月更文挑战第27天】云原生与大数据
71 5
|
3月前
|
存储 人工智能 Cloud Native
云栖重磅|从数据到智能:Data+AI驱动的云原生数据库
阿里云瑶池在2024云栖大会上重磅发布由Data+AI驱动的多模数据管理平台DMS:OneMeta+OneOps,通过统一、开放、多模的元数据服务实现跨环境、跨引擎、跨实例的统一治理,可支持高达40+种数据源,实现自建、他云数据源的无缝对接,助力业务决策效率提升10倍。
|
2月前
|
数据采集 分布式计算 OLAP
最佳实践:AnalyticDB在企业级大数据分析中的应用案例
【10月更文挑战第22天】在数字化转型的大潮中,企业对数据的依赖程度越来越高。如何高效地处理和分析海量数据,从中提取有价值的洞察,成为企业竞争力的关键。作为阿里云推出的一款实时OLAP数据库服务,AnalyticDB(ADB)凭借其强大的数据处理能力和亚秒级的查询响应时间,已经在多个行业和业务场景中得到了广泛应用。本文将从个人的角度出发,分享多个成功案例,展示AnalyticDB如何助力企业在广告投放效果分析、用户行为追踪、财务报表生成等领域实现高效的数据处理与洞察发现。
96 0
|
4月前
|
存储 人工智能 Cloud Native
云栖重磅|从数据到智能:Data+AI驱动的云原生数据库
阿里云数据库重磅升级!元数据服务OneMeta + OneOps统一管理多模态数据
|
5月前
|
安全 网络安全 数据安全/隐私保护
云原生技术探索:容器化与微服务架构的实践之路网络安全与信息安全:保护数据的关键策略
【8月更文挑战第28天】本文将深入探讨云原生技术的核心概念,包括容器化和微服务架构。我们将通过实际案例和代码示例,展示如何在云平台上实现高效的应用部署和管理。文章不仅提供理论知识,还包含实操指南,帮助开发者理解并应用这些前沿技术。 【8月更文挑战第28天】在数字化时代,网络安全和信息安全是保护个人和企业数据的前线防御。本文将探讨网络安全漏洞的成因、加密技术的应用以及提升安全意识的重要性。文章旨在通过分析网络安全的薄弱环节,介绍如何利用加密技术和提高用户警觉性来构建更为坚固的数据保护屏障。
|
5月前
|
Kubernetes Cloud Native 关系型数据库
云原生数据基础设施之kubeblocks
云原生数据基础设施之kubeblocks
|
5月前
|
分布式计算 大数据 数据处理
【大数据管理新纪元】EMR Delta Lake 与 DLF 深度集成:解锁企业级数据湖的无限潜能!
【8月更文挑战第26天】随着大数据技术的发展,Apache Spark已成为处理大规模数据集的首选工具。亚马逊的EMR服务简化了Spark集群的搭建和运行流程。结合使用Delta Lake(提供ACID事务保证和数据版本控制)与DLF(加强数据访问控制及管理),可以显著提升数据湖的可靠性和性能。本文通过一个电商公司的具体案例展示了如何在EMR上部署集成Delta Lake和DLF的环境,以及这一集成方案带来的几大优势:增强的可靠性、细粒度访问控制、性能优化以及易于管理的特性。这为数据工程师提供了一个高效且灵活的数据湖平台,简化了数据湖的建设和维护工作。
68 1
|
5月前
|
分布式计算 搜索推荐 物联网
大数据及AI典型场景实践问题之通过KafKa+OTS+MaxCompute完成物联网系统技术重构如何解决
大数据及AI典型场景实践问题之通过KafKa+OTS+MaxCompute完成物联网系统技术重构如何解决