Good Idea, 利用MySQL JSON特性优化千万级文库表

本文涉及的产品
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
RDS MySQL Serverless 高可用系列,价值2615元额度,1个月
云数据库 RDS PostgreSQL,高可用系列 2核4GB
简介: 记录一下sql调优中学到的东西,使用mysql的json列的存储方式,将一个200ms的查询减少到了20ms, 这是一个非常好的办法, 在以后的sql调优中, 不只是索引可以办到, 不妨试试json, 也许效果更好

👳我亲爱的各位大佬们好😘😘😘
♨️本篇文章记录的为 利用MySQL JSON特性优化千万级文库表 相关内容,适合在学Java的小白,帮助新手快速上手,也适合复习中,面试中的大佬🙉🙉🙉。
♨️如果文章有什么需要改进的地方还请大佬不吝赐教❤️🧡💛
👨‍🔧 个人主页 : 阿千弟
🔥 上期内容👉👉👉 : AOP的另类用法 (权限校验&&自定义注解)

前言:

一个类似于知网,范围又不局限于论文的这样的一个高质量文库,比如图书呢,它也有着与图书专属的这种类型属性,那像这样的底层的数据表呢,有几十个,都是围绕着一份文档来进行的描述,那刚开始构建的时候,我的哥们遇到了一个比较棘手的问题,就是不同类型的图书呢,他们所使用的属性是不一样的😥😥😥.

在这里插入图片描述

问题描述: 多表关联查询, 效率低

比如说图书类的文档呢,它可能会包含SBN、出版社这些信息,而论文类的呢,它要发表在报纸、期刊、杂志上,同时呢,还要去登记版号、版面等等这些信息,至于其他的,比如说一些网文或者一些高价值的文章呢,也都有自己的一些专有的属性,那么这就意味着在进行一个文档提取的时候,前台要显示出来,我们要底层查询的表其实是很多的.
在这里插入图片描述

我简单的罗列一下,比如说先要获取文档的主体的内容,然后去获取对应这个文档是哪个类型的,之后呢,再获取这个文档所拥有的哪些属性,比如说这个文档是个图书的话,那么它要获取SBN和出版社,然后再根据刚才的SBN和出版社获取这个文档,存在一些多对多的关系,那除此以外,还有比如说其他若干个基础信息都分散在了不同的表里边,那么我们可以看到针对于这一个操作来说,它呢其实包含了很多个数据表的查询和关联,这个处理效率在它们之前没有经过优化的时候呢,大概需要200毫秒时间才能把这些数据都提取完,那后来他们是怎么调整的呢?

在这里插入图片描述

解决方案一 : 反范式设计

一个版本,这个1.0呢,就是采用反范式设计,基于宽表,也就是我们典型的空间换时间,可以看到刚才我们处理慢的一个主要思路呢,就是一个数据表要查询多次才能获得完整的信息。那如果我们把这些数据都。综合到一个宽表里边儿,也就是我们反范式表是不是就可以了呢?
在这里插入图片描述
其实这个思路非常的好,我们可以比如说把所有的属性呢,以列的形式在这儿呢,都进行体现出来

弊端

在当前的这个宽表中呢,包含了所有可能会出现的属性,哪一个属性有数据,我们就提取哪一个,但是针对宽表呢,在我们日常工作中啊,并不太推荐使用,有两个原因 :

  • 它的字段一多以后,字段的动态填充和减少是要锁表的,尤其在数据量一大的时候,比如现在我们针对某一个杂文又有一个新的属性,你一旦添加列的时候,整个这个表就锁了。 对于我们的维护非常的不方便.
  • 数据查询的时候非常麻烦,难以基于动态列的方式来进行了提取数据
  • 作为宽表还有一些不能解决的问题,难以体现出一对多的关系

在这里插入图片描述

解决方案二 : mysql5.7后Json特性

采用mysql5.7之后所提供的一个叫Json的数据类型,所谓Json数据类型啊,其实就是把我们日常开发中数据序列化产生的这个Json直接存储到了mysql的对应的Json列里边,作为MYSQL5.7以后天然的对于这个Jason的存储解析,还有提取呢,都进行了支持

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

创建json列

这里模拟插入一条假数据

INSERT INTO t_base_data VALUES (1,'量子纠缠理论', 
    '{
   
    "caption": "量子领域",
    "brandId": 103,
    "category1Id": 903,
    "category2Id": 945,
    "category3Id": 946,
    "freightId": 10 ,
    "image":"https://img14.360buyimg.com/n1/jfs/t1/181065/5/3216/48663/6098c03fEad0ea4e5/659d59d79f8d0043.jpg",
    "introduction": "遇事不决,量子力学",
    "saleService": "实验室实战",
    "templateId": 42}'
);

执行sql语句

SELECT NAME,
(JSON_EXTRACT(content, '$.brandId')) brandId,
JSON_UNQUOTE(JSON_EXTRACT(content, '$.caption')) caption
FROM t_base_data;

在这里插入图片描述

可以看出

  • JSON_UNQUOTE 函数作用是 去除json字符串的引号,将值转成string类型

  • JSON_EXTRACT 函数作用是 提取json值

使用json中的字段作为查询条件

SELECT NAME,
    content -> '$.brandId' brandId,
    content -> '$.caption' caption
FROM t_base_data
    WHERE content -> '$.templateId' = 42;

在这里插入图片描述

  • -> 表达式 等同于 JSON_EXTRACT(content , '$.caption'))

    SELECT NAME,
      content ->> '$.brandId' brandId,
      content ->> '$.caption' caption
    FROM t_base_data
      WHERE content -> '$.templateId' = 42;
    

    在这里插入图片描述

  • ->> 表达式 等同于 JSON_UNQUOTE(JSON_EXTRACT(content , ‘$.caption’))

很好, 通过上面的方法, 我们可以很好的将弱关联字段查询出来了, 但是呢, 这个方式仍然不够完美, 虽然解决了链表查询耗时的问题, 但是我们如果想在千万级的数据中查询出我们所期望的这仍然很耗时

不妨尝试建立索引, 我们该怎么建索引呢?

小老弟小老妹们可能就要问了, 都是json串, 怎么建立索引呢

也许你们忘了一种叫做虚拟列的东西

在这里插入图片描述

继续优化

1. 创建虚拟列

ALTER TABLE t_base_data ADD COLUMN tb_templateId VARCHAR(32) GENERATED ALWAYS AS (content -> '$.templateId');

在这里插入图片描述
那与此同时呢,还有一个优秀的特点,基于这样书写以后,如果我们原始的Json数据发生了变化,只要一更新以后,对应的结果也会随之发生对应,从使用的角度来说,它就是一个标准的字段,只不过这个字段呢,只能读不能写而已

2. 将索引创建在虚拟列上

CREATE INDEX idx_tb_templated ON t_base_data(tb_templateId);

EXPLAIN SELECT * FROM t_base_data WHERE `tb_templateId` = 43;

在这里插入图片描述

可以看到索引已经生效, 问题完美解决

总结 : 效率高, json实用性强

  • 利用JSON解决动态数据问题,MySQL5.7以后提供了JSON数据类型,可以直接对JSON存储、提取与解析。
  • 因为JSON是弱约束的,因此存储数据非常灵活,同时也可基于虚拟列实现索引优化。

我的哥们儿把数据的查询效率一下子提升了有十几倍之多,这是一个非常好的办法, 在未来的项目中,我也会考虑基于Jason的这种活性呢,来优化我们的程序结构

在这里插入图片描述

如果这篇【文章】有帮助到你💖,希望可以给我点个赞👍,创作不易,如果有对Java后端或者对spring感兴趣的朋友,请多多关注💖💖💖
👨‍🔧 个人主页 : 阿千弟

相关实践学习
每个IT人都想学的“Web应用上云经典架构”实战
本实验从Web应用上云这个最基本的、最普遍的需求出发,帮助IT从业者们通过“阿里云Web应用上云解决方案”,了解一个企业级Web应用上云的常见架构,了解如何构建一个高可用、可扩展的企业级应用架构。
MySQL数据库入门学习
本课程通过最流行的开源数据库MySQL带你了解数据库的世界。   相关的阿里云产品:云数据库RDS MySQL 版 阿里云关系型数据库RDS(Relational Database Service)是一种稳定可靠、可弹性伸缩的在线数据库服务,提供容灾、备份、恢复、迁移等方面的全套解决方案,彻底解决数据库运维的烦恼。 了解产品详情: https://www.aliyun.com/product/rds/mysql 
目录
相关文章
|
4月前
|
SQL 缓存 关系型数据库
MySQL 慢查询是怎样优化的
本文深入解析了MySQL查询速度变慢的原因及优化策略,涵盖查询缓存、执行流程、SQL优化、执行计划分析(如EXPLAIN)、查询状态查看等内容,帮助开发者快速定位并解决慢查询问题。
161 0
|
2月前
|
缓存 关系型数据库 MySQL
降低MySQL高CPU使用率的优化策略。
通过上述方法不断地迭代改进,在实际操作中需要根据具体场景做出相对合理判断。每一步改进都需谨慎评估其变动可能导致其他方面问题,在做任何变动前建议先在测试环境验证其效果后再部署到生产环境中去。
94 6
|
3月前
|
存储 SQL 关系型数据库
MySQL 核心知识与索引优化全解析
本文系统梳理了 MySQL 的核心知识与索引优化策略。在基础概念部分,阐述了 char 与 varchar 在存储方式和性能上的差异,以及事务的 ACID 特性、并发事务问题及对应的隔离级别(MySQL 默认 REPEATABLE READ)。 索引基础部分,详解了 InnoDB 默认的 B+tree 索引结构(多路平衡树、叶子节点存数据、双向链表支持区间查询),区分了聚簇索引(数据与索引共存,唯一)和二级索引(数据与索引分离,多个),解释了回表查询的概念及优化方法,并分析了 B+tree 作为索引结构的优势(树高低、效率稳、支持区间查询)。 索引优化部分,列出了索引创建的六大原则
|
3月前
|
存储 SQL 关系型数据库
MySQL 动态分区管理:自动化与优化实践
本文介绍了如何利用 MySQL 的存储过程与事件调度器实现动态分区管理,自动化应对数据增长,提升查询性能与数据管理效率,并详细解析了分区创建、冲突避免及实际应用中的关键注意事项。
129 0
|
5月前
|
存储 SQL 关系型数据库
京东面试:mysql深度分页 严重影响性能?根本原因是什么?如何优化?
京东面试:mysql深度分页 严重影响性能?根本原因是什么?如何优化?
京东面试:mysql深度分页 严重影响性能?根本原因是什么?如何优化?
|
7月前
|
存储 关系型数据库 MySQL
MySQL细节优化:关闭大小写敏感功能的方法。
通过这种方法,你就可以成功关闭 MySQL 的大小写敏感功能,让你的数据库操作更加便捷。
503 19
|
8月前
|
SQL 关系型数据库 MySQL
基于SQL Server / MySQL进行百万条数据过滤优化方案
对百万级别数据进行高效过滤查询,需要综合使用索引、查询优化、表分区、统计信息和视图等技术手段。通过合理的数据库设计和查询优化,可以显著提升查询性能,确保系统的高效稳定运行。
279 9
|
8月前
|
关系型数据库 MySQL 数据库
从MySQL优化到脑力健康:技术人与效率的双重提升
聊到效率这个事,大家应该都挺有感触的吧。 不管是技术优化还是个人状态调整,怎么能更快、更省力地完成事情,都是我们每天要琢磨的事。
171 23
|
8月前
|
监控 关系型数据库 MySQL
MySQL和SQLSugar百万条数据查询分页优化
在面对百万条数据的查询时,优化MySQL和SQLSugar的分页性能是非常重要的。通过合理使用索引、调整查询语句、使用缓存以及采用高效的分页策略,可以显著提高查询效率。本文介绍的技巧和方法,可以为开发人员在数据处理和查询优化中提供有效的指导,提升系统的性能和用户体验。掌握这些技巧后,您可以在处理海量数据时更加游刃有余。
757 9
|
8月前
|
关系型数据库 MySQL
图解MySQL【日志】——磁盘 I/O 次数过高时优化的办法
当 MySQL 磁盘 I/O 次数过高时,可通过调整参数优化。控制刷盘时机以降低频率:组提交参数 `binlog_group_commit_sync_delay` 和 `binlog_group_commit_sync_no_delay_count` 调整等待时间和事务数量;`sync_binlog=N` 设置 write 和 fsync 频率,`innodb_flush_log_at_trx_commit=2` 使提交时只写入 Redo Log 文件,由 OS 择机持久化,但两者在 OS 崩溃时有丢失数据风险。
180 3

热门文章

最新文章

推荐镜像

更多