开源分布式数据库PolarDB-X源码解读——PolarDB-X源码解读(五):DML之Insert流程.

本文涉及的产品
云原生数据库 PolarDB PostgreSQL 版,标准版 2核4GB 50GB
云原生数据库 PolarDB MySQL 版,通用型 2核4GB 50GB
简介: 开源分布式数据库PolarDB-X源码解读——PolarDB-X源码解读(五):DML之Insert流程.

在阅读本文之前,强烈建议先阅读《PolarDB-X源码解读系列:SQL的一生》,能够了解一条SQL的执行流程,也能知道polardbx-sql(CN)的各个组件,然后再阅读本文,了解Insert的具体实现过程,加深各个组件的理解。Insert类的SQL语句的流程可初略分为:解析、校验、优化器、执行器、物理执行(polardbx-engine执行)。本文将以一条简单的Insert语句通过调试的方式进行解读。建表语句:  


#一个简单的PolarDB-X中的分库分表sbtest
CREATE TABLE `sbtest` (
    `id` int(11) NOT NULL AUTO_INCREMENT,
    `k` int(11) NOT NULL DEFAULT '0',
    `c` char(120) NOT NULL DEFAULT '',
    `pad` char(60) NOT NULL DEFAULT '',
    PRIMARY KEY (`id`)
)dbpartition by hash(`id`) tbpartition by hash(`id`) tbpartitions 2;
#调试语句
insert into sbtest(id) values(100);


一、解析


连接上PolarDB-X后,执行一条Insert语句insert into sbtest(id) values(100);PolarDB-X接收到该字符串语句后,开始执行该SQL,可见TConnection#executeSQL:


           


准备执行该SQL语句,ExecutionContext会保留该Sql执行的参数、配置、等上下文信息,该变量会一直陪伴该Sql经过解析、校验、优化器、执行器,直到下发给polardbx-engine(DN)。PolarDB-X执行该SQL时,需要先获取执行计划,可见代码TConnection#executeQuery:


ExecutionPlan plan=Planner.getInstance().plan(sql, 
executionContext);


为了避免执行同一条SQL每次都要解析、校验、优化器等操作,PolarDB-X内置了PlanCache,会在PlanCache中获取该SQL的执行计划,当然,并不是根据纯字符串SQL来进行缓存,而是生成SqlParameterized,如下图所示(Planner#plan),真正缓存的是sql模板,该类中的sql变量:INSERT INTO sbtest(id)\nVALUES (?),可适用于类似的语句,?代表可填入的值,不同的值都是同一类SQL语句。


               


如果PlanCache找不到的话,需要生成新的执行计划,具体代码见PlanCache#getFromCache:


         


先将字符串通过FastsqlParser解析成抽象语法树,检查有没有语法错误等,生成SqlNode,本条SQL是Insert语句,解析成SqlInsert类,然后继续根据抽象语法树获取执行计划,具体SqlInsert内容为:


           


简单解释几个变量:


 keywords:关键字,例如:Insert Ignore语句会加Ignore关键字,代表该语句特征。


 source:数据来源,插入数据的来源,这里是values,如果是 Insert ... Select语句,则是select语句。


 updateList:修改信息,例如:Insert ... ON DUPLICATE KEY 语句会把修改信息保存在该变量。


至此,完成了字符串SQL语句到SqlNode的转变,即完成了解析部分。


二、校验 


校验过程即检查SqlNode的语义是否正确,例如表是否存在、列是否存在、类型是否正确等等,具体入口在Planner#getPlan函数中:


SqlNode validatedNode = converter.validate(ast);


便是验证该SQL的有效性,PolarDB-X沿用了Apache Calcite框架,validate的实现也是类似的大框架,包含Scope和Namespace两个概念,在此基础上进行验证,SqlInsert类型的验证入口在SqlValidatorImpl#validateInsert(SqlInsert insert)中:


...
final SqlValidatorNamespace targetNamespace = getNamespace(insert);
validateNamespace(targetNamespace, unknownType);
...
final SqlNode source = insert.getSource();
if (source instanceof SqlSelect) {
    final SqlSelect sqlSelect = (SqlSelect) source;
    validateSelect(sqlSelect, targetRowType);
} else {
    final SqlValidatorScope scope = scopes.get(source);
    validateQuery(source, scope, targetRowType);
}
...


大体流程检查两个部分:首先,检查insert into sbtest语句是否正确;然后检查SqlInsert.source部分是否有效。本条SQL是Values,所以检查Values是否有效,如果是Insert...Select语句,source是SqlSelect,需要检查Select语句是否有效。没有报错,则说明SQL语句语义没有错误,校验通过,可以发现还是SqlInsert:


           


三、优化器


在经过优化器之前,还需要将SqlNode(SqlInsert)转成RelNode,大体含义就是将sql语法树转成关系表达式,入口在Planner#getPlan:

RelNode relNode = converter.toRel(validatedNode, plannerContext);


具体转换过程在SqlConverter#toRel:


...
final SqlToRelConverter sqlToRelConverter = new TddlSqlToRelConverter(...);
RelRoot root = sqlToRelConverter.convertQuery(validatedNode, false, true);
...


TddlSqlToRelConverter类是PolarDB-X的转换器,继承Calcite的SqlToRelConverter类,转换SqlInsert的执行过程在TddlSqlToRelConverter#convertInsert(SqlInsert call):


RelNode relNode = super.convertInsert(call);
if (relNode instanceof TableModify) {
    ...
}


可以发现,会调用SqlToRelConverter#convertInsert,在该方法中,会将SqlInsert转成LogicalTableModify,该类的内容如下:  


                               


可以注意到几个变量:operation:操作类型;input:输入来源,本条sql是values; PolarDB-X内部还有新的自己的RelNode,所以还会把RelNode再转成自己定义的RelNode,入口在Planner#getPlan:


ToDrdsRelVisitor toDrdsRelVisitor = new 
ToDrdsRelVisitor(validatedNode, plannerContext);
RelNode drdsRelNode = relNode.accept(toDrdsRelVisitor);


转换过程在ToDrdsRelVisitor#visit(RelNode other):


if ((other instanceof LogicalTableModify)) {
    ...
     if (operation == TableModify.Operation.INSERT || ...) {
         LogicalInsert logicalInsert = new LogicalInsert(modify);
         ...
     }
}


Insert类型会转成LogicalInsert,就是PolarDB-X内部的RelNode,执行也是基于该类,LogicalInsert的内容如下(还有部分变量不在截图中):


                       


大多数变量和LogicalTableModify一样,新增了像PolarDB-X特有的gsi相关变量等等。然后便是经过优化器阶段,优化器执行过程代码在Planner#sqlRewriteAndPlanEnumerate:


private RelNode sqlRewriteAndPlanEnumerate(RelNode input, PlannerContext plannerContext) {
    CalcitePlanOptimizerTrace.getOptimizerTracer().get().addSnapshot("Start", input, plannerContext);
    //RBO优化
    RelNode logicalOutput = optimizeBySqlWriter(input, plannerContext);
    CalcitePlanOptimizerTrace.getOptimizerTracer().get()
        .addSnapshot("PlanEnumerate", logicalOutput, plannerContext);
    //CBO优化
    RelNode bestPlan = optimizeByPlanEnumerator(logicalOutput, plannerContext);
    // finally we should clear the planner to release memory
    bestPlan.getCluster().getPlanner().clear();
    bestPlan.getCluster().invalidateMetadataQuery();
    return bestPlan;
}


Insert的优化器主要在RBO过程,定义了一些规则,CBO规则对Insert几乎没有改变。可以重点关注RBO的OptimizeLogicalInsertRule规则,会根据GMS(PolarDB-X的元数据管理)的信息来判断该SQL的执行计划,可能会将LogicalInsert转变成其它的RelNode去执行,方便区分不同的SQL执行方式,首先会确定该SQL的执行策略,主要分为三种:


public enum ExecutionStrategy { 
    /**
     * Foreach row, exists only one target partition.
     * Pushdown origin statement, with function call not pushable (like sequence call) replaced by RexCallParam.
     * Typical for single table and partitioned table without gsi.
     */
    PUSHDOWN,
    /**
     * Foreach row, might exists more than one target partition.
     * Pushdown origin statement, with nondeterministic function call replaced by RexCallParam.
     * Typical for broadcast table.
     */
    DETERMINISTIC_PUSHDOWN,
    /**
     * Foreach row, might exists more than one target partition, and data in different target partitions might be different.
     * Select then execute, with all function call replaced by RexCallParam.
     * Typical for table with gsi or table are doing scale out.
     */
    LOGICAL;
};


由于本条SQL较为简单,策略是PUSHDOWN,处理过程也比较简单,然后生成InsertWriter,该类负责生成下发到DN的SQL语句,保存在LogicalInsert中,OptimizeLogicalInsertRule处理规则较为细节,感兴趣的可以自行查看onMatch方法。经过优化器后,还是LogicalInsert类的RelNode,至此,意味着优化器执行完毕。最终会生成执行计划,在PlanCache#getFromCache,见下图(图中非全部变量):


         


ExecutionPlan.plan就是执行计划,可以发现是LogicalInsert,对于简单的Insert,PolarDB-X还会改写执行计划,代码在PlanCache#getFromCache:


BuildFinalPlanVisitor visitor = new 
BuildFinalPlanVisitor(executionPlan.getAst(), plannerContext);
executionPlan = 
executionPlan.copy(executionPlan.getPlan().accept(visitor));
insert into sbtest(id) values(100);

语句执行BuildFinalPlanVisitor#buildNewPlanForInsert(LogicalInsert logicalInsert,ExecutionContext ec),因为该Insert语句比较简单,只有一个values,包含拆分键和auto_increment列,只需要根据拆分键就能确定下发到DN的哪一个分片,在CN端无需更多操作,所以会简化执行计划,在BuildFinalPlanVisitor#buildSingleTableInsert转成SingleTableOperation,并保存了分库分表规则,最终的执行计划如下:


           


执行计划变成SingleTableOperation,至此,执行计划生成完毕。  


四、执行器


SQL语句生成执行计划后,将由执行器进行执行,执行入口在TConnection#executeQuery:


ResultCursor resultCursor=executor.execute(plan,executionContext);


然后会由ExecutorHelper#execute方法执行ExecutionPlan.plan,也就是前面的SingleTableOperation,执行策略有CURSOR、TP_LOCAL、AP_LOCAL、MPP,Insert类型基本都是走CURSOR,接着根据执行计划拿对应的Handler进行处理,具体可查看CommandHandlerFactoryMyImp类,例如:SingleTableOperation是MySingleTableModifyHandler,LogicalInsert是LogicalInsertHandler。会在对应的Handler里面进行执行,一般会返回一个Cursor,Cursor里面会调用真正的执行过程,调用Cursor.next便会获取结果,Insert语句的结果是affect Rows,本条SQL会创建一个MyPhyTableModifyCursor,入口在MySingleTableModifyHandler#handleInner:


...
MyPhyTableModifyCursor modifyCursor = (MyPhyTableModifyCursor) repo.getCursorFactory().repoCursor(executionContext, logicalPlan);
...
affectRows = modifyCursor.batchUpdate();
...


根据ExecutionContext和SingleTableOperation创建一个MyPhyTableModifyCursor,然后直接执行:


public int[] batchUpdate() {
    try {
        return handler.executeUpdate(this.plan);
    } catch (SQLException e) {
        throw GeneralUtil.nestedException(e);
    }
}


这里的this.plan就是SingleTableOperation,handler是PolarDB-X的CN与DN间交互的MyJdbcHandler,可以认为是执行物理计划的handler,会根据plan生成真正的物理SQL,下发到DN执行。由于这条SQL较为简单,CN不需要过多处理,再举一例Insert语句:insert into sbtest(k) values(101),(102);经过优化器后,该语句的执行计划是LogicalInsert,如下图:


           


可以发现sqlTemplate为INSERT\nINTO ? (id,k)\nVALUES(?,?),表名可能要换成物理表名,同时增加了一列id,因为该列是auto_increment,会有一个全局的sequence表来记录该列的值,才能保证全局唯一,插入的values的参数保留在ExecutionContext的params中,如下图:


           


id列的值会在真正生成物理执行计划的时候才会去获取,LogicalInsert计划适用LogicalInsertHandler来执行,执行过程:


public Cursor handle(RelNode logicalPlan, ExecutionContext executionContext){
    ...
    LogicalInsert logicalInsert = (LogicalInsert) logicalPlan;
    ...
    if (!logicalInsert.isSourceSelect()) {
        affectRows = doExecute(logicalInsert, executionContext, handlerParams);
    } else {
        affectRows = selectForInsert(logicalInsert, executionContext, handlerParams);
    }
    ...
}


会根据来源是否是Select语句选择不同的执行方式,具体执行过程在LogicalInsertHandler#executeInsert,如下:


...
//生成主表的物理执行计划
final InsertWriter primaryWriter = logicalInsert.getPrimaryInsertWriter();
List<RelNode> inputs = primaryWriter.getInput(executionContext);
...
//如果有GSI,生成GSI表的物理执行计划
final List<InsertWriter> gsiWriters = logicalInsert.getGsiInsertWriters();
gsiWriters.stream().map(gsiWriter -> gsiWriter.getInput(executionContext))...;
...
//执行所有物理执行计划
final int totalAffectRows = executePhysicalPlan(allPhyPlan, executionContext, schemaName, isBroadcast);
...


主表生成物理执行计划过程中,会先获取id的值,由于id也是拆分键,所以两个values会根据拆分键定位到不同的物理分库分表上,会生成有两个物理执行计划,如下:


           



           


其中dbIndex是物理库名,tableNames是物理表名,param保存了这条slqTemplate的参数值,填充上就是完整的SQL,然后执行所有物理执行计划,就完成了该SQL的执行。


五、物理执行


PolarDB-X中CN与DN的交互都在MyJdbcHandler中,以SingleTableOperation为例,看看具体交互过程:


public int[] executeUpdate(BaseQueryOperation phyTableModify) throws SQLException {
 ...
    //获取物理执行计划的库名和参数
    Pair<String, Map<Integer, ParameterContext>> dbIndexAndParam =
            phyTableModify.getDbIndexAndParam(executionContext.getParams() == null ? null : executionContext.getParams()
                .getCurrentParameter(), executionContext);
 ...
    //根据库名获取连接
    connection = getPhyConnection(transaction, rw, groupName);
 ...
     //根据参数组成字符串SQL
     String sql = buildSql(sqlAndParam.sql, executionContext);
 ...
     //根据连接创建prepareStatement
     ps = prepareStatement(sql, connection, executionContext, isInsert, false);
 ...
     //设置参数
     ParameterMethod.setParameters(ps, sqlAndParam.param);
 ...
     //执行
     affectRow = ((PreparedStatement) ps).executeUpdate();
 ...
}


将物理执行计划发送到DN执行,执行完成后,根据affectRow返回到执行器,最终会把结果返回给用户,至此,一条完整SQL就执行完成。


六、小结 


本文通过调试简单的Insert语句,介绍了PolarDB-X在解析、校验、优化器、执行器对Insert语句的处理,当然,Insert语句也有很多特殊的用法,本文并没有一一概述,感兴趣的同学可以在相应代码处进行查看。



相关实践学习
快速体验PolarDB开源数据库
本实验环境已内置PostgreSQL数据库以及PolarDB开源数据库:PolarDB PostgreSQL版和PolarDB分布式版,支持一键拉起使用,方便各位开发者学习使用。
相关文章
|
14天前
|
存储 SQL 安全
应用案例|开源 PolarDB-X 在互联网安全场景的应用实践
中盾集团采用PolarDB-X云原生分布式数据库开源版本,有效解决了大数据量处理、复杂查询以及历史数据维护等难题,实现了业务的高效扩展与优化。
|
12天前
|
关系型数据库 分布式数据库 数据库
开源云原生数据库PolarDB PostgreSQL 15兼容版本正式发布
PolarDB进行了深度的内核优化,从而实现以更低的成本提供商业数据库的性能。
|
8天前
惊世骇俗!开源 PolarDB-X 部署安装大冒险,全程心跳与惊喜不断!
【9月更文挑战第8天】作为技术爱好者的我,近期成功完成了开源 PolarDB-X 的部署安装。尽管过程中遇到不少挑战,但通过精心准备环境、下载安装包、配置参数及启动服务等步骤,最终顺利实现部署。本文将详细介绍部署全过程及可能遇到的问题,为您的 PolarDB-X 探索之旅提供参考与启发,希望能让大家在技术海洋里畅游得更加顺利!
25 2
|
11天前
|
Cloud Native 关系型数据库 分布式数据库
PolarDB开源项目未来展望:技术趋势与社区发展方向
【9月更文挑战第5天】随着云计算技术的发展,阿里云推出的云原生分布式数据库PolarDB受到广泛关注。本文探讨PolarDB的未来展望,包括云原生与容器化集成、HTAP及实时分析能力提升、智能化运维与自动化管理等技术趋势;并通过加强全球开源社区合作、拓展行业解决方案及完善开发者生态等措施推动社区发展,目标成为全球领先的云原生数据库之一,为企业提供高效、可靠的服务。
34 5
|
10天前
|
关系型数据库 MySQL 分布式数据库
PolarDB开源社区动态:最新版本功能亮点与更新解读
【9月更文挑战第6天】随着云计算技术的发展,分布式数据库系统成为企业数据处理的核心。阿里云的云原生数据库PolarDB自开源以来备受关注,近日发布的最新版本在内核稳定性、性能、分布式CDC架构及基于时间点的恢复等方面均有显著提升,并新增了MySQL一键导入功能。本文将解读这些新特性并提供示例代码,帮助企业更好地利用PolarDB处理实时数据同步和离线分析任务,提升数据安全性。未来,PolarDB将继续创新,为企业提供更高效的数据处理服务。
30 3
|
22天前
|
存储 缓存 负载均衡
【PolarDB-X 技术揭秘】Lizard B+tree:揭秘分布式数据库索引优化的终极奥秘!
【8月更文挑战第25天】PolarDB-X是阿里云的一款分布式数据库产品,其核心组件Lizard B+tree针对分布式环境优化,解决了传统B+tree面临的数据分片与跨节点查询等问题。Lizard B+tree通过一致性哈希实现数据分片,确保分布式一致性;智能分区实现了负载均衡;高效的搜索算法与缓存机制降低了查询延迟;副本机制确保了系统的高可用性。此外,PolarDB-X通过自适应分支因子、缓存优化、异步写入、数据压缩和智能分片等策略进一步提升了Lizard B+tree的性能,使其能够在分布式环境下提供高性能的索引服务。这些优化不仅提高了查询速度,还确保了系统的稳定性和可靠性。
50 5
|
16天前
|
C# UED 定位技术
WPF控件大全:初学者必读,掌握控件使用技巧,让你的应用程序更上一层楼!
【8月更文挑战第31天】在WPF应用程序开发中,控件是实现用户界面交互的关键元素。WPF提供了丰富的控件库,包括基础控件(如`Button`、`TextBox`)、布局控件(如`StackPanel`、`Grid`)、数据绑定控件(如`ListBox`、`DataGrid`)等。本文将介绍这些控件的基本分类及使用技巧,并通过示例代码展示如何在项目中应用。合理选择控件并利用布局控件和数据绑定功能,可以提升用户体验和程序性能。
32 0
|
18天前
|
Cloud Native 关系型数据库 分布式数据库
什么是云原生数据库PolarDB分布式版
本文介绍什么是云原生数据库PolarDB分布式版,也称为PolarDB分布式版,本手册中简称为PolarDB-X。
35 0
|
20天前
|
弹性计算 关系型数据库 数据库
手把手带你从自建 MySQL 迁移到云数据库,一步就能脱胎换骨
阿里云瑶池数据库来开课啦!自建数据库迁移至云数据库 RDS原来只要一步操作就能搞定!点击阅读原文完成实验就可获得一本日历哦~
|
24天前
|
关系型数据库 MySQL 数据库
RDS MySQL灾备服务协同解决方案构建问题之数据库备份数据的云上云下迁移如何解决
RDS MySQL灾备服务协同解决方案构建问题之数据库备份数据的云上云下迁移如何解决

相关产品

  • 云原生数据库 PolarDB