【Linux】进程间通信 --- 管道 共享内存 消息队列 信号量-1

简介: 【Linux】进程间通信 --- 管道 共享内存 消息队列 信号量-1

【Linux】进程间通信 --- 管道 共享内存 消息队列 信号量


1.消息队列提供了一个从一个进程向另外一个进程发送一块数据的方法


2.每个数据块都被认为是有一个类型,接收者进程接收的数据块可以有不同的类型值


3.IPC资源必须删除,否则不会自动清除,除非重启,所以system V IPC资源的生命周期随内核


内核也给我们提供了获取消息队列和控制消息队列的系统接口

812ea376205e4dc2a10b776e6c0eb1a3.png

4.
消息队列通常由两个组件组成:生产者和消费者。生产者将消息发送到队列中,消费者从队列中读取消息并进行处理。消息队列软件可以提供许多有用的功能,例如消息确认、消息分组、消息过期时间等等

下面是消息队列的数据发送和接收接口


71e6d3a0733d40bf8819bcfe5fe605c0.png


五、System V 信号量(了解)


1.信号量是什么?

信号量的本质是一个计数器,通常用来表示公共资源中,资源数量多少的问题。当访问没有保护的公共资源时,会产生数据不一致的问题,我们将被保护起来的公共资源称为临界资源,但大部分资源其实都是独立的。公共资源(内存,文件,网络等)都是要通过代码来进行访问的,这些代码我们称为临界区,其余未访问公共资源的代码称为非临界区


2.

由于各进程要求共享资源,而且有些资源需要互斥使用,因此各进程间竞争使用这些资源,进程的这种关系为进程的互斥,信号量主要用于同步与互斥。

一个程序要执行代码,那就执行所有代码,要执行一半不执行了,那就必须回滚,回到最初的状态。我们称这种要么不做,要做就一定必须做完的两态的情况称为原子性。

c54b2926eaca46ecab17e11f4838affd.png


3.

只要访问公共资源,我们就必须对公共资源进行保护。所有的进程在访问公共资源之前,都必须申请sem信号量,申请sem信号量不就需要先看到同一份sem信号量吗?那么其实sem信号量本身就是公共资源,所以信号量也必须保证自身操作的安全性,那么信号量的++或- -等操作也都必须得是原子性的,要么做成功,要么就回到最初状态


4.

共享资源既可以作为整体使用,也可以划分成为一个一个的资源子部分进行使用。当多个子资源被多个进程进行使用时,我们称这样的行为叫做并发。


5.IPC资源必须删除,否则不会自动清除,除非重启,所以system V IPC资源的生命周期随内核

2e7fd0d2c3374ce2b9ada0eeed72fadd.png



六、IPC资源的组织方式(多态的daddy)


1.

对于System V标准的IPC资源组织方式来说,资源的获取与释放操作,他们的接口相似度非常高,

所以OS要对这些同一标准的各个通信机制进行管理,他们都有各自的内核数据结构,但都非常的相似,OS系统可以通过数组的方式对这些System V标准的IPC资源进行管理。


2.

结构体的第一个成员地址,在数字上和结构体对象本身的地址是相同的。虽然他们类型不同,但是地址的字面值是相同的,所以我们可以只存储这些内核数据结构的第一个字段的地址,用一个指针数组来进行存储,因为虽然这些IPC资源的内核数据结构不同,但是他们的第一个字段的类型都是相同的,都是struct ipc_perm,所以我们可以用指针数组来进行管理。

当要访问具体的某个IPC资源的内核数据结构时,我们可以将数组中的内容拿出来,将其强转成对应的IPC资源内核数据结构的类型,也就是转成结构体类型,那么此时这个指针指向的就不再是struct ipc_perm类型的结构体了,而是变为struct shmid_ds或struct semid_ds或struct msqid_ds这几种IPC内核数据结构类型的结构体,此时我们就可以具体的访问某个IPC资源了。

上面能够这么做的原因其实是因为,结构体的地址和结构体中第一个字段的地址 在字面值上是相同的,只是他们类型不同罢了,我们可以通过类型强转的方式,让指针指向不同的结构体。


3.

下面组织IPC资源的方式不就是多态吗?右边三个资源就是派生类,左边是存储基类指针的指针数组,基类指针指向哪个派生类结构体,就调用哪个派生类结构体里的方法成员,只不过在Linux这里是通过指针类型强转的方式来实现的。

所以不是linux抄袭C++的多态,而是先有的linux后有的C++,linux才是爹。

4a36006cf2ee4d6485d22f0a5f18e804.png













































目录
打赏
0
0
0
0
0
分享
相关文章
从零开始掌握进程间通信:管道、信号、消息队列、共享内存大揭秘
本文详细介绍了进程间通信(IPC)的六种主要方式:管道、信号、消息队列、共享内存、信号量和套接字。每种方式都有其特点和适用场景,如管道适用于父子进程间的通信,消息队列能传递结构化数据,共享内存提供高速数据交换,信号量用于同步控制,套接字支持跨网络通信。通过对比和分析,帮助读者理解并选择合适的IPC机制,以提高系统性能和可靠性。
306 14
Linux中的System V通信标准--共享内存、消息队列以及信号量
希望本文能帮助您更好地理解和应用System V IPC机制,构建高效的Linux应用程序。
135 48
Linux:进程间通信(共享内存详细讲解以及小项目使用和相关指令、消息队列、信号量)
通过上述讲解和代码示例,您可以理解和实现Linux系统中的进程间通信机制,包括共享内存、消息队列和信号量。这些机制在实际开发中非常重要,能够提高系统的并发处理能力和数据通信效率。希望本文能为您的学习和开发提供实用的指导和帮助。
210 20
JVM简介—1.Java内存区域
本文详细介绍了Java虚拟机运行时数据区的各个方面,包括其定义、类型(如程序计数器、Java虚拟机栈、本地方法栈、Java堆、方法区和直接内存)及其作用。文中还探讨了各版本内存区域的变化、直接内存的使用、从线程角度分析Java内存区域、堆与栈的区别、对象创建步骤、对象内存布局及访问定位,并通过实例说明了常见内存溢出问题的原因和表现形式。这些内容帮助开发者深入理解Java内存管理机制,优化应用程序性能并解决潜在的内存问题。
113 29
JVM简介—1.Java内存区域
JVM实战—2.JVM内存设置与对象分配流转
本文详细介绍了JVM内存管理的相关知识,包括:JVM内存划分原理、对象分配与流转、线上系统JVM内存设置、JVM参数优化、问题汇总。
JVM实战—2.JVM内存设置与对象分配流转
JVM简介—2.垃圾回收器和内存分配策略
本文介绍了Java垃圾回收机制的多个方面,包括垃圾回收概述、对象存活判断、引用类型介绍、垃圾收集算法、垃圾收集器设计、具体垃圾回收器详情、Stop The World现象、内存分配与回收策略、新生代配置演示、内存泄漏和溢出问题以及JDK提供的相关工具。
JVM简介—2.垃圾回收器和内存分配策略
Elasticsearch集群JVM调优设置合适的堆内存大小
Elasticsearch集群JVM调优设置合适的堆内存大小
862 1
|
1月前
|
JVM: 内存、类与垃圾
分代收集算法将内存分为新生代和老年代,分别使用不同的垃圾回收算法。新生代对象使用复制算法,老年代对象使用标记-清除或标记-整理算法。
27 6
深入探索Java虚拟机(JVM)的内存管理机制
本文旨在为读者提供对Java虚拟机(JVM)内存管理机制的深入理解。通过详细解析JVM的内存结构、垃圾回收算法以及性能优化策略,本文不仅揭示了Java程序高效运行背后的原理,还为开发者提供了优化应用程序性能的实用技巧。不同于常规摘要仅概述文章大意,本文摘要将简要介绍JVM内存管理的关键点,为读者提供一个清晰的学习路线图。
|
4月前
|
JVM内存参数
-Xmx[]:堆空间最大内存 -Xms[]:堆空间最小内存,一般设置成跟堆空间最大内存一样的 -Xmn[]:新生代的最大内存 -xx[use 垃圾回收器名称]:指定垃圾回收器 -xss:设置单个线程栈大小 一般设堆空间为最大可用物理地址的百分之80
AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等