瓴羊Dataphin隐私计算:数据安全流通方案-Dataphin隐私计算详解-Dataphin隐私计算四大技术应用场景

本文涉及的产品
数据安全中心,免费版
简介: 瓴羊Dataphin隐私计算:数据安全流通方案-Dataphin隐私计算详解-

1) ID安全匹配


• 功能介绍:

在弱匿名化的前提下进行ID安全匹配。用于在不泄漏数据参与多方原始数据的前提下,得出双方共有ID集,非共有ID不会透出。

 image.png

 

 

• 适用场景:

适用于一些数据圈选的场景。例如,某银行期望在某电商平台,对【特定非活跃老客】用户进行老客营销,需要求两边客户交集,但两边客户ID不透出,此处可用ID安排匹配功能完成。

 

 

 

 

2) 隐匿信息查询

 

• 功能介绍:

也称隐私信息检索,指查询方隐藏被查询对象关键词或客户ID信息,数据服务方提供匹配的查询结果却无法获知具体对应哪个查询对象。

 

image.png

 

• 适用场景:

适用于一些查询场景,数据查询方不想向数据服务方透露要查询的内容。例如病患想通过医药系统查询其疾病的治疗药物,如以该疾病名为查询条件,医疗系统将会得知该病人可能患有这样的疾病,从而病人的隐私被泄露,通过隐私信息查询可以避免此类泄露问题。

 

 

3) 联合建模

 

• 功能介绍:

在原始数据不出域的前提下,通过交换各个参与方的算法训练的中间结果梯度、参数信息,或完全在密文条件下进行计算,从而发挥参与多方数据样本更丰富、更全面的优势,得出更优模型。

 

联合建模,分为横向联合建模、纵向联合建模。其中,纵向联合建模,联合多个参与者的共同样本的不同数据特征进行联合建模,即各个参与者的训练数据是纵向划分的。横向联合建模,联合多个参与者的具有相同特征的多行样本进行联合建模,即各个参与者的训练数据是横向划分的。

 

• 适用场景:

纵向联合建模,适用于参与者训练样本ID重叠较多,而数据特征重叠较少的情况,例如某银行和某电商平台,分别拥有一部分客户数据,拥有的客户特征不一样,银行拥有客户的金融信用数据,电商拥有客户的电商消费数据,期望联合两方数据训练精准营销模型,则适合使用纵向联合建模。

 

横向联合建模,适用于参与者的数据特征重叠较多,而样本ID重叠较少的情况,例如两家银行,分别拥有一部分客户数据,拥有的客户特征相似,但各自数据偏少,期望联合两方数据训练共同训练评分卡模型,则适合使用横向联合建模。

 

 image.png

 

4) 联合分析

 

• 功能介绍:

在原始数据不可见前提下,提供SQL模式对多方数据

进行联合分析。

 

• 适用场景:

适用于双方数据不共享,但有一些统计分析的需求。例如电商平台在媒体平台进行了营销广告投放,投放结束后,电商平台期望能联合两边的数据,进行全链路的营销活动复盘分析,就可以借助联合分析功能实现。


 image.png


 

5) 总结回顾


image.png

相关文章
|
10月前
|
SQL 安全 数据建模
Dataphin常见问题之计算任务没有按调度执行如何解决
Dataphin是阿里云提供的一站式数据处理服务,旨在帮助企业构建一体化的智能数据处理平台。Dataphin整合了数据建模、数据处理、数据开发、数据服务等多个功能,支持企业更高效地进行数据治理和分析。
|
10月前
|
数据挖掘 数据建模 BI
Dataphin常见问题之衍生指标的计算逻辑需要写where和group条件如何解决
Dataphin是阿里云提供的一站式数据处理服务,旨在帮助企业构建一体化的智能数据处理平台。Dataphin整合了数据建模、数据处理、数据开发、数据服务等多个功能,支持企业更高效地进行数据治理和分析。
|
4月前
|
安全 Java 数据库连接
Dataphin的数据共享的应用场景和方案
不同的业务场景对数据访问和使用有着各自独特的需求,从简单的数据下载到复杂的跨系统集成,选择合适的数据共享与访问方式至关重要。本文旨在探讨几种常见的Dataphin上的数据共享与访问机制——包括数据复制、数据下载、视图创建、行级及列级权限控制、API数据服务以及JDBC连接等,并分析它们各自的适用场景、优势及限制,以帮助企业更好地根据自身需求做出合理的选择。
193 0
|
5月前
|
自然语言处理 算法 Unix
【数据安全】敏感字过滤方案总结
【数据安全】敏感字过滤方案总结
96 1
|
5月前
|
Java fastjson Apache
【数据安全】数据脱敏方案总结
【数据安全】数据脱敏方案总结
293 1
|
8月前
|
SQL 关系型数据库 MySQL
如何在Dataphin中构建Flink+Paimon流式湖仓方案
当前大数据处理工业界非常重要的一个大趋势是一体化,尤其是湖仓一体架构。与过去分散的数据仓库和数据湖不同,湖仓一体架构通过将数据存储和处理融为一体,不仅提升了数据访问速度和处理效率,还简化了数据管理流程,降低了资源成本。企业可以更轻松地实现数据治理和分析,从而快速决策。paimon是国内开源的,也是最年轻的成员。 本文主要演示如何在 Dataphin 产品中构建 Flink+Paimon 的流式湖仓方案。
8057 10
如何在Dataphin中构建Flink+Paimon流式湖仓方案
|
6月前
|
存储 安全 数据库
双重防护,无懈可击!Python AES+RSA加密方案,构建最强数据安全堡垒
【9月更文挑战第11天】在数字时代,数据安全至关重要。AES与RSA加密技术相结合,构成了一道坚固防线。AES以其高效性保障数据加密,而RSA则确保密钥安全传输,二者相辅相成,提供双重保护。本文通过Python代码示例展示了这一加密方案的魅力,强调了其在实际应用中的重要性和安全性。使用HTTPS等安全协议传输加密密钥和密文,确保数据在数字世界中自由流通而无忧。
153 1
|
7月前
|
存储 安全 数据库
双重防护,无懈可击!Python AES+RSA加密方案,构建最强数据安全堡垒
【8月更文挑战第3天】在数字时代,数据安全至关重要。Python AES+RSA加密方案提供了一种强大且可靠的数据保护方式。AES以高效安全著称,适用于大量数据的快速加密;RSA作为非对称加密技术,确保了密钥传输的安全性。二者结合形成“内外兼修”的加密策略:AES加密数据内容,RSA保护AES密钥,共同构建起数据安全的双重保险。通过示例代码展示了这一加密流程,强调了加密后密钥与密文的安全传输和存储的重要性。在实际应用中,应采用HTTPS等安全协议进行传输,并将数据安全存储于加密的数据库或文件系统中。
127 12
|
10月前
|
监控
Dataphin功能Tips系列(10)-质量分计算口径
质量分大盘中的质量分计算口径是什么?
126 0
Dataphin功能Tips系列(10)-质量分计算口径
|
10月前
|
SQL 分布式计算 DataWorks
Dataphin常见问题之补数据任务卡着不动如何解决
Dataphin是阿里云提供的一站式数据处理服务,旨在帮助企业构建一体化的智能数据处理平台。Dataphin整合了数据建模、数据处理、数据开发、数据服务等多个功能,支持企业更高效地进行数据治理和分析。