即插即用 | 通过自适应聚类Transformer来提升DERT目标检测器的速度(文末附论文下载)(二)

简介: 即插即用 | 通过自适应聚类Transformer来提升DERT目标检测器的速度(文末附论文下载)(二)

4、实验


4.1、Ablation Study

透过上图可以看出估计误差随着L的增大和r的减小而减小,与前面分析一致。同时,当r大于6时,继续增大r对估计误差和FLOPs影响不大。当r是小于或等于6,继续降低r失败将导致更大的增加而较小的减少错误;因此最终论文选择了r=8来进行实验。

4.2、Final Performance

透过下图可以看出K-mean对于原始DERT的性能损失太大,而本文提出的ACT在L=32是基本可以达到DERT的性能,而基于知识蒸馏的ACT-MTKD在精度和速度上又有了进一步的提升:

从下表可以看出,基于知识蒸馏的ACT在L=32时与原始DERT-DC5相当,但是其GFLOPs比DERT-DC5更低:

4.2、自适应聚类的可视化结果

参考

[1] End-to-End Object Detection with Adaptive Clustering Transformer

相关文章
|
机器学习/深度学习 算法 数据挖掘
即插即用 | 通过自适应聚类Transformer来提升DERT目标检测器的速度(文末附论文下载)(一)
即插即用 | 通过自适应聚类Transformer来提升DERT目标检测器的速度(文末附论文下载)(一)
983 0
|
27天前
|
机器学习/深度学习 计算机视觉
YOLOv11改进策略【Neck】| ASF-YOLO 注意力尺度序列融合模块改进颈部网络,提高小目标检测精度
YOLOv11改进策略【Neck】| ASF-YOLO 注意力尺度序列融合模块改进颈部网络,提高小目标检测精度
75 9
YOLOv11改进策略【Neck】| ASF-YOLO 注意力尺度序列融合模块改进颈部网络,提高小目标检测精度
|
1月前
|
机器学习/深度学习 编解码 异构计算
YOLOv11改进策略【模型轻量化】| 替换骨干网络为 ICCV 2023的EfficientViT 用于高分辨率密集预测的多尺度线性关注
YOLOv11改进策略【模型轻量化】| 替换骨干网络为 ICCV 2023的EfficientViT 用于高分辨率密集预测的多尺度线性关注
62 11
YOLOv11改进策略【模型轻量化】| 替换骨干网络为 ICCV 2023的EfficientViT 用于高分辨率密集预测的多尺度线性关注
|
10月前
|
机器学习/深度学习
YOLOv8改进 | 2023主干篇 | RepViT从视觉变换器(ViT)的视角重新审视CNN
YOLOv8改进 | 2023主干篇 | RepViT从视觉变换器(ViT)的视角重新审视CNN
467 1
YOLOv8改进 | 2023主干篇 | RepViT从视觉变换器(ViT)的视角重新审视CNN
|
10月前
|
机器学习/深度学习 编解码
YOLOv5改进 | 2023主干篇 | RepViT从视觉变换器(ViT)的视角重新审视CNN
YOLOv5改进 | 2023主干篇 | RepViT从视觉变换器(ViT)的视角重新审视CNN
388 0
|
10月前
|
机器学习/深度学习 自然语言处理 算法
从滑动窗口到YOLO、Transformer:目标检测的技术革新
从滑动窗口到YOLO、Transformer:目标检测的技术革新
231 0
|
机器学习/深度学习 自然语言处理 算法
涨点技巧 | 旷视孙剑等人提出i-FPN:用于目标检测的隐式特征金字塔网络(文末获取论文)(一)
涨点技巧 | 旷视孙剑等人提出i-FPN:用于目标检测的隐式特征金字塔网络(文末获取论文)(一)
335 0
涨点技巧 | 旷视孙剑等人提出i-FPN:用于目标检测的隐式特征金字塔网络(文末获取论文)(一)
|
计算机视觉
目标检测提升技巧 | 结构化蒸馏一行代码让目标检测轻松无痛涨点(二)
目标检测提升技巧 | 结构化蒸馏一行代码让目标检测轻松无痛涨点(二)
171 0
|
机器学习/深度学习 自动驾驶 计算机视觉
目标检测提升技巧 | 结构化蒸馏一行代码让目标检测轻松无痛涨点(一)
目标检测提升技巧 | 结构化蒸馏一行代码让目标检测轻松无痛涨点(一)
176 0
|
机器学习/深度学习 自动驾驶 计算机视觉
目标检测提升技巧 | 结构化蒸馏一行代码让目标检测轻松无痛涨点
目标检测提升技巧 | 结构化蒸馏一行代码让目标检测轻松无痛涨点
218 0