整个元素周期表通用,AI 即时预测材料结构与特性

简介: 整个元素周期表通用,AI 即时预测材料结构与特性


材料的性质由其原子排列决定。然而,现有的获得这种排列的方法要么过于昂贵,要么对许多元素无效。

现在,加州大学圣地亚哥分校纳米工程系的研究人员开发了一种人工智能算法,可以几乎即时地预测任何材料(无论是现有材料还是新材料)的结构和动态特性。该算法被称为 M3GNet,用于开发 matterverse.ai 数据库,该数据库包含超过 3100 万种尚未合成的材料,其特性由机器学习算法预测。Matterverse.ai 促进了具有卓越性能的新技术材料的发现。

该研究以「A universal graph deep learning interatomic potential for the periodic table」为题,于 2022 年 11 月 28 日发布在《Nature Computational Science》上。

论文链接:https://www.nature.com/articles/s43588-022-00349-3

对于大规模材料研究,需要根据原子之间的多体相互作用来描述势能面 (PES) 的高效、线性标度的原子间势 (IAP)。然而,如今大多数 IAP 都是为范围很窄的化学物质定制的:通常是单一元素或最多不超过四到五种元素。

最近,PES 的机器学习已成为一种特别有前途的 IAP 开发方法。然而,还没有研究证明在元素周期表和所有类型的晶体中有一个普遍适用的 IAP。

在过去的十年中,高效、可靠的电子结构代码和高通量自动化框架的出现,导致了计算材料数据的大型联邦数据库的发展。在进行结构松弛过程中积累了大量的 PES 数据,即中间结构及其相应的能量、力和应力,但人们对这些数据关注较少。

「与蛋白质类似,我们需要了解材料的结构才能预测其特性。」 该研究的主要作者 Shyue Ping Ong说。「我们需要的是用于材料的 AlphaFold。

AlphaFold 是谷歌 DeepMind 开发的一种预测蛋白质结构的人工智能算法。为了构建材料的等价物,Ong 和他的团队将图神经网络与多体交互(many-body interactions)相结合,构建了一个深度学习架构,该架构可以在元素周期表的所有元素中通用、高精度地工作。

数学图是晶体和分子的自然表示,节点和边分别代表原子和它们之间的键。传统的材料图神经网络模型已被证明对一般材料特性预测非常有效,但由于缺乏物理约束,因此不适合用作 IAP。

研究人员开发了一个明确包含多体相互作用的材料图架构。模型开发的灵感来自传统的 IAP,在这项工作中,将重点关注三体交互 (M3GNet) 的整合。

图 1:多体图势和主要的计算块示意图。(来源:论文)IAP 数据集的基准测试作为初始基准,研究人员择了 Ong 和同事先前生成的元素能量和力的多样化 DFT 数据集,用于面心立方(fcc)镍、fcc 铜、体心立方(bcc)锂、bcc 钼、金刚石硅和金刚石锗。表 1:M3GNet 模型与现有模型 EAM、MEAM、NNP 和 MTP 在单元素数据集上的误差比较。(来源:论文)从表 1 可以看出,M3GNet IAP 大大优于经典的多体势;它们的性能也与基于本地环境的 ML-IAP 相当。应该注意的是,尽管 ML-IAP 可以实现比 M3GNet IAP 略小的能量和力误差,但它在处理多元素化学方面的灵活性会大大降低,因为在 ML-IAP 中加入多种元素通常会导致组合爆炸回归系数的数量和相应的数据要求。相比之下,M3GNet 架构将每个原子(节点)的元素信息表示为可学习的嵌入向量。这样的框架很容易扩展到多组分化学。与其他 GNN 一样,M3GNet 框架能够捕获长距离的相互作用,而无需增加键构建的截止半径。同时,与之前的 GNN 模型不同,M3GNet 架构仍然随着键数的变化保持能量、力和应力的连续变化,这是 IAP 的关键要求。元素周期表的通用 IAP为了开发整个元素周期表的 IAP,该团队使用了世界上最大的 DFT 晶体结构弛豫开放数据库之一(Materials Project)。图 2:MPF.2021.2.8 数据集的分布。(来源:论文)原则上,IAP 可以只训练能量,或者能量和力的组合。在实践中,仅在能量上训练的 M3GNet IAP (M3GNet-E) 无法达到预测力或应力的合理精度,平均绝对误差 (MAE) 甚至大于数据的平均绝对偏差。能量+力(M3GNet- EF)和能量+力+应力(M3GNet-EFS)训练的 M3GNet 模型获得了相对相似的能量和力 MAE,但 M3GNet- EFS 的应力 MAE 约为 M3GNet- EF 模型的一半。对于涉及晶格变化的应用,例如结构松弛或 NpT 分子动力学模拟,准确的应力预测是必要的。研究结果表明,在模型训练中包含所有三个属性(能量、力和压力)对于获得实用的 IAP 至关重要。最终的 M3GNet-EFS IAP(以下简称为 M3GNet 模型)实现了每个原子 0.035eV 的平均值,能量、力和压力测试 MAE 的平均值分别为 0.072eVÅ−1 和 0.41GPa。图 3:与 DFT 计算相比,测试数据集上的模型预测。在测试数据上,模型预测和 DFT ground truth 匹配得很好,正如 DFT 和模型预测之间线性拟合的高线性度和 R2 值所揭示的那样。模型误差的累积分布表明,50% 的数据的能量、力和应力误差分别小于每个原子 0.01eV、0.033eVÅ−1 和 0.042 GPa。M3GNet 计算的德拜温度不太准确,这可归因于 M3GNet 对剪切模量的预测相对较差;然而,体积模量预测是合理的。然后将 M3GNet IAP 应用于模拟材料发现工作流程,其中最终的 DFT 结构是先验未知的。M3GNet 松弛是对来自 3,140 种材料的测试数据集的初始结构进行的。M3GNet 松弛结构的能量计算产生每个原子 0.035 eV 的 MAE,并且 80% 的材料的误差小于每个原子 0.028 eV。使用 M3GNet 松弛结构的误差分布接近于所知道 DFT 最终结构的情况,这表明 M3GNet 潜力可以准确地帮助获得正确的结构。一般来说,M3GNet 的松弛会迅速收敛。图 4:使用 M3GNet 弛豫晶体结构。(来源:论文)新材料发现M3GNet 能准确、快速地弛豫任意晶体结构,并预测它们的能量,使其成为大规模材料发现的理想选择。研究人员生成了 31,664,858 个候选结构作为起点,使用 M3GNet IAP 松弛结构并计算到 Materials Project 凸包 (Ehull-m) 的符号能量距离;1,849,096 种材料的 Ehull-m 每个原子小于 0.01 eV。作为对 M3GNet 在材料发现方面性能的进一步评估,研究人员计算了发现率,即从约 180 万 Ehull-m小于 0.001 eV /原子的材料中均匀采样 1000 个结构的 DFT 稳定材料(Ehull−dft ≤ 0)的比例。发现率保持接近 1.0,达到每个原子约 0.5 eV 的 Ehull-m 阈值,并且在每个原子 0.001 eV 的最严格阈值下保持在 0.31 的合理高值。图 5:对于 1000 个结构的均匀样本,DFT 稳定比作为 Ehull−m 阈值的函数。(来源:论文)对于这个材料集,研究人员还比较了有无 M3GNet 预松弛的 DFT 松弛时间成本。结果表明,没有M3GNe t预松弛时,DFT 松弛时间成本约为 M3GNet 预松弛时的 3 倍。图 6:使用 M3GNet 预松弛的 DFT 加速。(来源:论文)在今天 matterverse.ai 的 3100 万种材料中,预计有超过 100 万种材料具有潜在的稳定性。Ong 和他的团队不仅打算大大扩展材料的数量,还打算大幅扩展 ML 预测属性的数量,包括使用他们之前开发的多保真度方法的小数据量的高价值属性。除了结构松弛,M3GNet IAP 在材料动态模拟和性能预测方面也有广泛的应用。「例如,我们通常对锂离子在锂离子电池电极或电解质中的扩散速度很感兴趣。扩散越快,电池充电或放电的速度就越快,」Ong 说。「我们已经证明,M3GNet IAP 可用于以高精度预测材料的锂电导率。我们坚信 M3GNet 架构是一种变革性工具,可以极大地扩展我们探索新材料化学和结构的能力。」为了推广 M3GNet 的使用,该团队已将该框架作为开源 Python 代码发布在 Github 上。并计划将 M3GNet IAP 作为工具集成到商业材料模拟包中。参考内容:https://techxplore.com/news/2022-11-breakthrough-algorithm-exploration-space-materials.html人工

相关文章
|
2月前
|
人工智能 搜索推荐
写歌词的技巧和方法:塑造完美歌词结构的艺术,妙笔生词AI智能写歌词软件
歌词是音乐的灵魂,其结构艺术至关重要。开头需引人入胜,主体部分无论是叙事还是抒情,都应层次分明、情感丰富,结尾则需升华或留白,给人以深刻印象。《妙笔生词智能写歌词软件》提供多种AI辅助功能,助你轻松创作完美歌词,成为音乐创作的得力助手。
|
2月前
|
人工智能
巧妙构建歌词结构:写歌词的技巧和方法之关键,妙笔生词AI智能写歌词软件
在音乐世界里,歌词是灵魂的载体,构建其结构至关重要。优秀的歌词需有引人入胜的开头、条理清晰且富变化的主体,以及深刻难忘的结尾。《妙笔生词智能写歌词软件》提供多种功能,帮助创作者克服结构难题,激发灵感,助你写出打动人心的歌词,开启音乐创作的新篇章。
|
2月前
|
人工智能
歌词结构的巧妙安排:写歌词的方法与技巧解析,妙笔生词AI智能写歌词软件
歌词创作是一门艺术,关键在于巧妙的结构安排。开头需迅速吸引听众,主体部分要坚实且富有逻辑,结尾则应留下深刻印象。《妙笔生词智能写歌词软件》提供多种 AI 功能,帮助创作者找到灵感,优化歌词结构,写出打动人心的作品。
|
11天前
|
机器学习/深度学习 人工智能 自然语言处理
AI自己长出了类似大脑的脑叶?新研究揭示LLM特征的惊人几何结构
近年来,大型语言模型(LLM)的内部运作机制备受关注。麻省理工学院的研究人员在论文《The Geometry of Concepts: Sparse Autoencoder Feature Structure》中,利用稀疏自编码器(SAE)分析LLM的激活空间,揭示了其丰富的几何结构。研究发现,特征在原子、大脑和星系三个尺度上展现出不同的结构,包括晶体结构、中尺度模块化结构和大尺度点云结构。这些发现不仅有助于理解LLM的工作原理,还可能对模型优化和其他领域产生重要影响。
53 25
|
19天前
|
机器学习/深度学习 人工智能 开发者
【AI系统】昇思 MindSpore 关键特性
本文介绍华为自研AI框架昇思MindSpore,一个面向全场景的AI计算框架,旨在提供统一、高效、安全的平台,支持AI算法研究与生产部署。文章详细阐述了MindSpore的定位、架构、特性及在端边云全场景下的应用优势,强调其动静态图统一、联邦学习支持及高性能优化等亮点。
50 7
【AI系统】昇思 MindSpore 关键特性
|
16天前
|
人工智能 数据挖掘
AI长脑子了?LLM惊现人类脑叶结构并有数学代码分区,MIT大牛新作震惊学界!
麻省理工学院的一项新研究揭示了大型语言模型(LLM)内部概念空间的几何结构,与人脑类似。研究通过分析稀疏自编码器生成的高维向量,发现了概念空间在原子、大脑和星系三个层次上的独特结构,为理解LLM的内部机制提供了新视角。论文地址:https://arxiv.org/abs/2410.19750
58 12
|
2月前
|
人工智能
歌词结构的艺术:写歌词的技巧和方法深度剖析,妙笔生词AI智能写歌词软件
歌词是音乐的灵魂伴侣,其结构蕴含独特艺术魅力。掌握歌词结构技巧是创作者成功的关键。开头需迅速吸引听众,主体部分通过叙事、抒情或对话形式展开,结尾则点睛收尾。创作时可借助《妙笔生词智能写歌词软件》,利用 AI 功能优化歌词,提供丰富模板和案例,助力灵感涌现,轻松掌握歌词结构艺术。
|
2月前
|
人工智能
写歌词的技巧和方法:打造完美歌词结构,妙笔生词AI智能写歌词软件
写歌词的技巧包括:开头吸引人,主体逻辑清晰,结尾画龙点睛。使用《妙笔生词智能写歌词软件》的AI功能,如智能写词、押韵优化等,可助你克服创作瓶颈,打造完美歌词结构,适用于民谣、摇滚、流行等多种风格。
|
2月前
|
人工智能
写歌词的技巧和方法:构建独特歌词结构的策略,妙笔生词AI智能写歌词软件
歌词创作如同搭建艺术殿堂,独特的歌词结构是其基石。掌握构建策略,让你的歌词脱颖而出。开头营造神秘氛围或出人意料的情感,主体部分采用倒叙、插叙或融合矛盾情感,结尾带来情感反转或深邃思考。《妙笔生词智能写歌词软件》提供 AI 智能写词、押韵优化等功能,助你轻松获取灵感,打造独特歌词结构。
|
2月前
|
人工智能
精通歌词结构技巧:写歌词的方法与实践,妙笔生词AI智能写歌词软件
歌词创作是音乐的灵魂,掌握其结构技巧至关重要。开头需迅速吸引听众,主体部分需结构清晰、情感丰富,结尾则要余韵悠长。无论是叙事还是抒情,妙笔生词智能写歌词软件都能助你一臂之力,提供AI智能创作、优化及解析等多功能支持,助你轻松驾驭歌词创作。