六、PyCIL: A Python Toolbox for Class-Incremental Learning
我们开源了一个基于pytorch的Class-IL框架:PyCIL。其中不仅包含了如EWC、iCaRL等一批早期的fundamental的方法,还包含了一些现在state-of-the-art的Class-IL算法,希望能够帮助一些希望了解和研究相关领域的学者。项目地址:PyCIL[13]
Methods Reproduced
FineTune: Baseline method which simply updates parameters on new task, suffering from Catastrophic Forgetting. By default, weights corresponding to the outputs of previous classes are not updated.
- EWC: Overcoming catastrophic forgetting in neural networks. PNAS2017 [paper]
- LwF: Learning without Forgetting. ECCV2016 [paper]
- Replay: Baseline method with exemplars.
- GEM: Gradient Episodic Memory for Continual Learning. NIPS2017 [paper]
- iCaRL: Incremental Classifier and Representation Learning. CVPR2017 [paper]
- BiC: Large Scale Incremental Learning. CVPR2019 [paper]
- WA: Maintaining Discrimination and Fairness in Class Incremental Learning. CVPR2020 [paper]
- PODNet: PODNet: Pooled Outputs Distillation for Small-Tasks Incremental Learning. ECCV2020 [paper]
- DER: DER: Dynamically Expandable Representation for Class Incremental Learning. CVPR2021 [paper]
- Coil: Co-Transport for Class-Incremental Learning. ACM MM2021 [paper]
部分实验结果
-
实验结果(一)
实验结果(二)
参考
- Zhiyuan Chen; Bing Liu; Ronald Brachman; Peter Stone; Francesca Rossi, Lifelong Machine Learning: Second Edition , Morgan & Claypool, 2018. https://ieeexplore.ieee.org/document/8438617
- Catastrophic forgetting in connectionist networks https://www.sciencedirect.com/science/article/pii/S1364661399012942
- PackNet: Adding Multiple Tasks to a Single Network by Iterative Pruning https://arxiv.org/abs/1711.05769
- Three scenarios for continual learning https://arxiv.org/abs/1904.07734
- Learning without Forgetting https://arxiv.org/abs/1606.09282
- Distilling the Knowledge in a Neural Network https://arxiv.org/abs/1503.02531
- iCaRL: Incremental Classifier and Representation Learning https://arxiv.org/abs/1611.07725
- Large Scale Incremental Learning https://arxiv.org/abs/1905.13260
- Maintaining Discrimination and Fairness in Class Incremental Learning https://arxiv.org/abs/1911.07053
- DER: Dynamically Expandable Representation for Class Incremental Learning https://arxiv.org/abs/2103.16788
- https://arxiv.org/abs/1801.01423https://arxiv.org/abs/1801.01423
- Co-Transport for Class-Incremental Learning https://arxiv.org/abs/2107.12654
- PyCIL: A Python Toolbox for Class-Incremental Learning https://arxiv.org/abs/2112.12533