图像模糊复原(代码讲解)#去雾#毕业设计

简介: 图像模糊复原(代码讲解)#去雾#毕业设计

1.主要内容和目标


本文讲述如何运用代码来将迷糊图像进行复原,以达到清晰图像以及细节增强的目的。

首先呈现了前后对比图,左图为模糊原图,右图为复原图像。

(不只是用在二值图像)

218c78b245ab1de60e46ecf4d1159e0e_c1144694ab184071935a7ab6ca6bc4d8.png

2.代码讲述


```python
def multiScaleSharpen(img ,radius):
    h,w,chan = img.shape
    GaussBlue1 = np.zeros(img.shape,dtype = uint8)#创建mask
    GaussBlue2 = np.zeros(img.shape, dtype=uint8)
    GaussBlue3 = np.zeros(img.shape, dtype=uint8)
    Dest_float_img = np.zeros(img.shape, dtype=float32)
    Dest_img = np.zeros(img.shape, dtype=uint8)
    w1 = xx#权重选择
    w2 =xx
    w3 = xx
    GaussBlue1 = cv2.GaussianBlur(img,(radius,radius),x)#高斯模糊
    GaussBlue2 = cv2.GaussianBlur(img,(radius*x,radius*x),x)
    GaussBlue3 = cv2.GaussianBlur(img,(radius*x,radius*x),x)
    for i in range(0,h):#遍历图像
        for j in range(0,w):
            for k in range(0,chan):
                Src = img.item(i,j,k)
                D1 = Src-GaussBlue1.item(i,j,k)
                D2 = GaussBlue1.item(i,j,k) - xxx
                xxxx=xxx+xxxx
                Dest_img=xxxx
    return Dest_img
if __name__ == '__main__':
    img = cv2.imread('C:\\Users\\AIR\\Desktop\\a\\imwrite\\11.png',1)
    #img = cv2.imread("128.jpg")
    h,w,d=img.shape
    multiScaleSharpen_out = np.zeros((h,w,d), dtype=uint8)
    multiScaleSharpen_out = multiScaleSharpen(img,5)#jishu
    multiScaleSharpen_out1 = np.zeros((h,w,d), dtype=uint8)
    multiScaleSharpen_out1 = multiScaleSharpen(img,11)#jishu
    cv2.imwrite('C:\\Users\\AIR\\Desktop\\a\\imwrite\\12.png',multiScaleSharpen_out)
    cv2.imshow('src',img)
    cv2.imshow('dst_5',multiScaleSharpen_out)
    cv2.imshow('dst_11',multiScaleSharpen_out1)
上述细节增强和模糊复原有一定去雾功效。
根据此模板,利用加权高斯滤波,将完成模糊图像复原。可以将论文中的模糊图像复原,完成毕业设计用。

相关文章
|
7月前
|
人工智能 搜索推荐
StableIdentity:可插入图像/视频/3D生成,单张图即可变成超人,可直接与ControlNet配合使用
【2月更文挑战第17天】StableIdentity:可插入图像/视频/3D生成,单张图即可变成超人,可直接与ControlNet配合使用
127 2
StableIdentity:可插入图像/视频/3D生成,单张图即可变成超人,可直接与ControlNet配合使用
|
机器学习/深度学习 运维 算法
基于卷积神经网络和手工特征注入的皮肤损伤图像异常检测:一种绕过皮肤镜图像预处理的方法
基于卷积神经网络和手工特征注入的皮肤损伤图像异常检测:一种绕过皮肤镜图像预处理的方法
130 1
|
7月前
|
机器学习/深度学习 编解码 并行计算
【传知代码】用二维图像渲染3D场景视频-论文复现
mip-NeRF是针对NeRF(Neural Radiance Fields)的改进模型,旨在解决NeRF在不同分辨率下渲染图像时的模糊和伪影问题。mip-NeRF通过引入多尺度表示和圆锥体采样,减少了图像伪影,提升了细节表现力,同时比NeRF快7%,模型大小减半。相比NeRF,mip-NeRF在标准数据集上的错误率降低17%,多尺度数据集上降低60%。此外,它的渲染速度比超采样NeRF快22倍。该模型适用于3D场景渲染和相关应用,具有广阔的发展前景。
107 2
|
7月前
|
存储 传感器 算法
数字图像处理的图像操作
数字图像处理的图像操作
|
机器学习/深度学习 编解码 算法
CV之NoGAN:利用图像增强技术(图片上色)实现对旧图像和电影片段进行着色和修复(爱因斯坦、鲁迅旧照/清末官员生活场景等案例)
CV之NoGAN:利用图像增强技术(图片上色)实现对旧图像和电影片段进行着色和修复(爱因斯坦、鲁迅旧照/清末官员生活场景等案例)
CV之NoGAN:利用图像增强技术(图片上色)实现对旧图像和电影片段进行着色和修复(爱因斯坦、鲁迅旧照/清末官员生活场景等案例)
|
人工智能 编解码 移动开发
NeRF基于线稿生成逼真三维人脸,细节风格随意改,论文已上SIGGRAPH
NeRF基于线稿生成逼真三维人脸,细节风格随意改,论文已上SIGGRAPH
466 0
|
机器学习/深度学习 算法
【目标识别】检测具有相同背景的不同图像并找到图像中的红色圆圈目标(Matlab代码实现)
【目标识别】检测具有相同背景的不同图像并找到图像中的红色圆圈目标(Matlab代码实现)
|
编解码 缓存 计算机视觉
神还原物体复杂、高频细节,4K-NeRF高保真视图合成来了
神还原物体复杂、高频细节,4K-NeRF高保真视图合成来了
148 0
|
机器学习/深度学习 存储 传感器
【图像隐藏】基于小波变换和SPHIT的图像嵌入提取含水印攻击附matlab代码
【图像隐藏】基于小波变换和SPHIT的图像嵌入提取含水印攻击附matlab代码
|
计算机视觉
基于OpenCV实现对图片及视频中感兴趣区域颜色识别
基于OpenCV实现对图片及视频中感兴趣区域颜色识别
基于OpenCV实现对图片及视频中感兴趣区域颜色识别

热门文章

最新文章