学习目标
- 知道车道曲率计算的方法
- 知道计算中心点偏离距离的计算
1.曲率的介绍
曲线的曲率就是针对曲线上某个点的切线方向角对弧长的转动率,通过微分来定义,表明曲线偏离直线的程度。数学上表明曲线在某一点的弯曲程度的数值。曲率越大,表示曲线的弯曲程度越大。曲率的倒数就是曲率半径。
1.1.圆的曲率
下面有三个球体,网球、篮球、地球,半径越小的越容易看出是圆的,所以随着半径的增加,圆的程度就越来越弱了。
定义球体或者圆的“圆”的程度,就是 曲率 ,计算方法为:
其中rr为球体或者圆的半径,这样半径越小的圆曲率越大,直线可以看作半径为无穷大的圆,其曲率为:
1.2.曲线的曲率
不同的曲线有不同的弯曲程度:
怎么来表示某一条曲线的弯曲程度呢?
我们知道三点确定一个圆:
当δ 趋近于0时,我们可以的到曲线在x_0x0处的密切圆,也就是曲线在该点的圆近似:
另,在曲线比较平坦的位置,密切圆较大,在曲线比较弯曲的地方,密切圆较小,
因此,我们通过密切圆的曲率来定义曲线的曲率,定义如下:
2.实现
计算曲率半径的方法,代码实现如下:
def cal_radius(img, left_fit, right_fit): # 图像中像素个数与实际中距离的比率 # 沿车行进的方向长度大概覆盖了30米,按照美国高速公路的标准,宽度为3.7米(经验值) ym_per_pix = 30 / 720 # y方向像素个数与距离的比例 xm_per_pix = 3.7 / 700 # x方向像素个数与距离的比例 # 计算得到曲线上的每个点 left_y_axis = np.linspace(0, img.shape[0], img.shape[0] - 1) left_x_axis = left_fit[0] * left_y_axis ** 2 + left_fit[1] * left_y_axis + left_fit[2] right_y_axis = np.linspace(0, img.shape[0], img.shape[0] - 1) right_x_axis = right_fit[0] * right_y_axis ** 2 + right_fit[1] * right_y_axis + right_fit[2] # 获取真实环境中的曲线 left_fit_cr = np.polyfit(left_y_axis * ym_per_pix, left_x_axis * xm_per_pix, 2) right_fit_cr = np.polyfit(right_y_axis * ym_per_pix, right_x_axis * xm_per_pix, 2) # 获得真实环境中的曲线曲率 left_curverad = ((1 + (2 * left_fit_cr[0] * left_y_axis * ym_per_pix + left_fit_cr[1]) ** 2) ** 1.5) / np.absolute( 2 * left_fit_cr[0]) right_curverad = ((1 + ( 2 * right_fit_cr[0] * right_y_axis * ym_per_pix + right_fit_cr[1]) ** 2) ** 1.5) / np.absolute( 2 * right_fit_cr[0]) # 在图像上显示曲率 cv2.putText(img, 'Radius of Curvature = {}(m)'.format(np.mean(left_curverad)), (20, 50), cv2.FONT_ITALIC, 1, (255, 255, 255), 5) return img
曲率半径显示效果:
计算偏离中心的距离:
# 1. 定义函数计算图像的中心点位置 def cal_line__center(img): undistort_img = img_undistort(img, mtx, dist) rigin_pipline_img = pipeline(undistort_img) transform_img = img_perspect_transform(rigin_pipline_img, M) left_fit, right_fit = cal_line_param(transform_img) y_max = img.shape[0] left_x = left_fit[0] * y_max ** 2 + left_fit[1] * y_max + left_fit[2] right_x = right_fit[0] * y_max ** 2 + right_fit[1] * y_max + right_fit[2] return (left_x + right_x) / 2 # 2. 假设straight_lines2_line.jpg,这张图片是位于车道的中央,实际情况可以根据测量验证. img =cv2.imread("./test/straight_lines2_line.jpg") lane_center = cal_line__center(img) print("车道的中心点为:{}".format(lane_center)) # 3. 计算偏离中心的距离 def cal_center_departure(img, left_fit, right_fit): # 计算中心点 y_max = img.shape[0] left_x = left_fit[0] * y_max ** 2 + left_fit[1] * y_max + left_fit[2] right_x = right_fit[0] * y_max ** 2 + right_fit[1] * y_max + right_fit[2] xm_per_pix = 3.7 / 700 center_depart = ((left_x + right_x) / 2 - lane_center) * xm_per_pix # 在图像上显示偏移 if center_depart > 0: cv2.putText(img, 'Vehicle is {}m right of center'.format(center_depart), (20, 100), cv2.FONT_ITALIC, 1, (255, 255, 255), 5) elif center_depart < 0: cv2.putText(img, 'Vehicle is {}m left of center'.format(-center_depart), (20, 100), cv2.FONT_ITALIC, 1, (255, 255, 255), 5) else: cv2.putText(img, 'Vehicle is in the center', (20, 100), cv2.FONT_ITALIC, 1, (255, 255, 255), 5) return img
计算偏离中心显示效果如下:
总结
1.曲率是表示曲线的弯曲程度,在这里是计算车道的弯曲程度
2.偏离中心的距离:利用已知的在中心的图像计算其他图像的偏离距离
总代码汇总:
# encoding:utf-8 from matplotlib import font_manager my_font = font_manager.FontProperties(fname="/System/Library/Fonts/PingFang.ttc") import cv2 import numpy as np import matplotlib.pyplot as plt #遍历文件夹 import glob from moviepy.editor import VideoFileClip import sys reload(sys) sys.setdefaultencoding('utf-8') """参数设置""" nx = 9 ny = 6 #获取棋盘格数据 file_paths = glob.glob("./camera_cal/calibration*.jpg") # # 绘制对比图 # def plot_contrast_image(origin_img, converted_img, origin_img_title="origin_img", converted_img_title="converted_img", # converted_img_gray=False): # fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(15, 20)) # ax1.set_title = origin_img_title # ax1.imshow(origin_img) # ax2.set_title = converted_img_title # if converted_img_gray == True: # ax2.imshow(converted_img, cmap="gray") # else: # ax2.imshow(converted_img) # plt.show() #相机矫正使用opencv封装好的api #目的:得到内参、外参、畸变系数 def cal_calibrate_params(file_paths): #存储角点数据的坐标 object_points = [] #角点在真实三维空间的位置 image_points = [] #角点在图像空间中的位置 #生成角点在真实世界中的位置 objp = np.zeros((nx*ny,3),np.float32) #以棋盘格作为坐标,每相邻的黑白棋的相差1 objp[:,:2] = np.mgrid[0:nx,0:ny].T.reshape(-1,2) #角点检测 for file_path in file_paths: img = cv2.imread(file_path) #将图像灰度化 gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY) #角点检测 rect,coners = cv2.findChessboardCorners(gray,(nx,ny),None) #若检测到角点,则进行保存 即得到了真实坐标和图像坐标 if rect == True : object_points.append(objp) image_points.append(coners) # 相机较真 ret, mtx, dist, rvecs, tvecs = cv2.calibrateCamera(object_points, image_points, gray.shape[::-1], None, None) return ret, mtx, dist, rvecs, tvecs # 图像去畸变:利用相机校正的内参,畸变系数 def img_undistort(img, mtx, dist): dis = cv2.undistort(img, mtx, dist, None, mtx) return dis #车道线提取 #颜色空间转换--》边缘检测--》颜色阈值--》并且使用L通道进行白色的区域进行抑制 def pipeline(img,s_thresh = (170,255),sx_thresh=(40,200)): # 复制原图像 img = np.copy(img) # 颜色空间转换 hls = cv2.cvtColor(img,cv2.COLOR_RGB2HLS).astype(np.float) l_chanel = hls[:,:,1] s_chanel = hls[:,:,2] #sobel边缘检测 sobelx = cv2.Sobel(l_chanel,cv2.CV_64F,1,0) #求绝对值 abs_sobelx = np.absolute(sobelx) #将其转换为8bit的整数 scaled_sobel = np.uint8(255 * abs_sobelx / np.max(abs_sobelx)) #对边缘提取的结果进行二值化 sxbinary = np.zeros_like(scaled_sobel) #边缘位置赋值为1,非边缘位置赋值为0 sxbinary[(scaled_sobel >= sx_thresh[0]) & (scaled_sobel <= sx_thresh[1])] = 1 #对S通道进行阈值处理 s_binary = np.zeros_like(s_chanel) s_binary[(s_chanel >= s_thresh[0]) & (s_chanel <= s_thresh[1])] = 1 # 结合边缘提取结果和颜色通道的结果, color_binary = np.zeros_like(sxbinary) color_binary[((sxbinary == 1) | (s_binary == 1)) & (l_chanel > 100)] = 1 return color_binary #透视变换-->将检测结果转换为俯视图。 #获取透视变换的参数矩阵【二值图的四个点】 def cal_perspective_params(img,points): # x与y方向上的偏移 offset_x = 330 offset_y = 0 #转换之后img的大小 img_size = (img.shape[1],img.shape[0]) src = np.float32(points) #设置俯视图中的对应的四个点 左上角 右上角 左下角 右下角 dst = np.float32([[offset_x, offset_y], [img_size[0] - offset_x, offset_y], [offset_x, img_size[1] - offset_y], [img_size[0] - offset_x, img_size[1] - offset_y]]) ## 原图像转换到俯视图 M = cv2.getPerspectiveTransform(src, dst) # 俯视图到原图像 M_inverse = cv2.getPerspectiveTransform(dst, src) return M, M_inverse #根据透视变化矩阵完成透视变换 def img_perspect_transform(img,M): #获取图像大小 img_size = (img.shape[1],img.shape[0]) #完成图像的透视变化 return cv2.warpPerspective(img,M,img_size) # 精确定位车道线 #传入已经经过边缘检测的图像阈值结果的二值图,再进行透明变换 def cal_line_param(binary_warped): #定位车道线的大致位置==计算直方图 histogram = np.sum(binary_warped[:,:],axis=0) #计算y轴 # 将直方图一分为二,分别进行左右车道线的定位 midpoint = np.int(histogram.shape[0]/2) #分别统计左右车道的最大值 midpoint = np.int(histogram.shape[0] / 2) leftx_base = np.argmax(histogram[:midpoint]) #左车道 rightx_base = np.argmax(histogram[midpoint:]) + midpoint #右车道 #设置滑动窗口 #对每一个车道线来说 滑动窗口的个数 nwindows = 9 #设置滑动窗口的高 window_height = np.int(binary_warped.shape[0]/nwindows) #设置滑动窗口的宽度==x的检测范围,即滑动窗口的一半 margin = 100 #统计图像中非0点的个数 nonzero = binary_warped.nonzero() nonzeroy = np.array(nonzero[0])#非0点的位置-x坐标序列 nonzerox = np.array(nonzero[1])#非0点的位置-y坐标序列 #车道检测位置 leftx_current = leftx_base rightx_current = rightx_base #设置阈值:表示当前滑动窗口中的非0点的个数 minpix = 50 #记录窗口中,非0点的索引 left_lane_inds = [] right_lane_inds = [] #遍历滑动窗口 for window in range(nwindows): # 设置窗口的y的检测范围,因为图像是(行列),shape[0]表示y方向的结果,上面是0 win_y_low = binary_warped.shape[0] - (window + 1) * window_height #y的最低点 win_y_high = binary_warped.shape[0] - window * window_height #y的最高点 # 左车道x的范围 win_xleft_low = leftx_current - margin win_xleft_high = leftx_current + margin # 右车道x的范围 win_xright_low = rightx_current - margin win_xright_high = rightx_current + margin # 确定非零点的位置x,y是否在搜索窗口中,将在搜索窗口内的x,y的索引存入left_lane_inds和right_lane_inds中 good_left_inds = ((nonzeroy >= win_y_low) & (nonzeroy < win_y_high) & (nonzerox >= win_xleft_low) & (nonzerox < win_xleft_high)).nonzero()[0] good_right_inds = ((nonzeroy >= win_y_low) & (nonzeroy < win_y_high) & (nonzerox >= win_xright_low) & (nonzerox < win_xright_high)).nonzero()[0] left_lane_inds.append(good_left_inds) right_lane_inds.append(good_right_inds) # 如果获取的点的个数大于最小个数,则利用其更新滑动窗口在x轴的位置=修正车道线的位置 if len(good_left_inds) > minpix: leftx_current = np.int(np.mean(nonzerox[good_left_inds])) if len(good_right_inds) > minpix: rightx_current = np.int(np.mean(nonzerox[good_right_inds])) # 将检测出的左右车道点转换为array left_lane_inds = np.concatenate(left_lane_inds) right_lane_inds = np.concatenate(right_lane_inds) # 获取检测出的左右车道x与y点在图像中的位置 leftx = nonzerox[left_lane_inds] lefty = nonzeroy[left_lane_inds] rightx = nonzerox[right_lane_inds] righty = nonzeroy[right_lane_inds] # 3.用曲线拟合检测出的点,二次多项式拟合,返回的结果是系数 left_fit = np.polyfit(lefty, leftx, 2) right_fit = np.polyfit(righty, rightx, 2) return left_fit, right_fit #填充车道线之间的多边形 def fill_lane_poly(img,left_fit,right_fit): #行数 y_max = img.shape[0] #设置填充之后的图像的大小 取到0-255之间 out_img = np.dstack((img,img,img))*255 #根据拟合结果,获取拟合曲线的车道线像素位置 left_points = [[left_fit[0] * y ** 2 + left_fit[1] * y + left_fit[2], y] for y in range(y_max)] right_points = [[right_fit[0] * y ** 2 + right_fit[1] * y + right_fit[2], y] for y in range(y_max - 1, -1, -1)] # 将左右车道的像素点进行合并 line_points = np.vstack((left_points, right_points)) # 根据左右车道线的像素位置绘制多边形 cv2.fillPoly(out_img, np.int_([line_points]), (0, 255, 0)) return out_img #计算车道线曲率的方法 def cal_readius(img,left_fit,right_fit): # 比例 ym_per_pix = 30/720 xm_per_pix = 3.7/700 # 得到车道线上的每个点 left_y_axis = np.linspace(0,img.shape[0],img.shape[0]-1) #个数img.shape[0]-1 left_x_axis = left_fit[0]*left_y_axis**2+left_fit[1]*left_y_axis+left_fit[0] right_y_axis = np.linspace(0,img.shape[0],img.shape[0]-1) right_x_axis = right_fit[0]*right_y_axis**2+right_fit[1]*right_y_axis+right_fit[2] # 把曲线中的点映射真实世界,再计算曲率 left_fit_cr = np.polyfit(left_y_axis*ym_per_pix,left_x_axis*xm_per_pix,2) right_fit_cr = np.polyfit(right_y_axis*ym_per_pix,right_x_axis*xm_per_pix,2) # 计算曲率 left_curverad = ((1+(2*left_fit_cr[0]*left_y_axis*ym_per_pix+left_fit_cr[1])**2)**1.5)/np.absolute(2*left_fit_cr[0]) right_curverad = ((1+(2*right_fit_cr[0]*right_y_axis*ym_per_pix *right_fit_cr[1])**2)**1.5)/np.absolute((2*right_fit_cr[0])) # 将曲率半径渲染在图像上 写什么 cv2.putText(img,'Radius of Curvature = {}(m)'.format(np.mean(left_curverad)),(20,50),cv2.FONT_ITALIC,1,(255,255,255),5) return img # 计算车道线中心的位置 def cal_line_center(img): #去畸变 undistort_img = img_undistort(img,mtx,dist) #提取车道线 rigin_pipeline_img = pipeline(undistort_img) #透视变换 trasform_img = img_perspect_transform(rigin_pipeline_img,M) #精确定位 left_fit,right_fit = cal_line_param(trasform_img) #当前图像的shape[0] y_max = img.shape[0] #左车道线 left_x = left_fit[0]*y_max**2+left_fit[1]*y_max+left_fit[2] #右车道线 right_x = right_fit[0]*y_max**2+right_fit[1]*y_max+right_fit[2] #返回车道中心点 return (left_x+right_x)/2 def cal_center_departure(img,left_fit,right_fit): # 计算中心点 y_max = img.shape[0] left_x = left_fit[0]*y_max**2 + left_fit[1]*y_max +left_fit[2] right_x = right_fit[0]*y_max**2 +right_fit[1]*y_max +right_fit[2] xm_per_pix = 3.7/700 center_depart = ((left_x+right_x)/2-lane_center)*xm_per_pix # 渲染 if center_depart>0: cv2.putText(img,'Vehicle is {}m right of center'.format(center_depart), (20, 100), cv2.FONT_ITALIC, 1, (255, 255, 255), 5) elif center_depart<0: cv2.putText(img, 'Vehicle is {}m left of center'.format(-center_depart), (20, 100), cv2.FONT_ITALIC, 1, (255, 255, 255), 5) else: cv2.putText(img, 'Vehicle is in the center', (20, 100), cv2.FONT_ITALIC, 1, (255, 255, 255), 5) return img #计算车辆偏离中心点的距离 def cal_center_departure(img,left_fit,right_fit): # 计算中心点 y_max = img.shape[0] #左车道线 left_x = left_fit[0]*y_max**2 + left_fit[1]*y_max +left_fit[2] #右车道线 right_x = right_fit[0]*y_max**2 +right_fit[1]*y_max +right_fit[2] #x方向上每个像素点代表的距离大小 xm_per_pix = 3.7/700 #计算偏移距离 像素距离 × xm_per_pix = 实际距离 center_depart = ((left_x+right_x)/2-lane_center)*xm_per_pix # 渲染 if center_depart>0: cv2.putText(img,'Vehicle is {}m right of center'.format(center_depart), (20, 100), cv2.FONT_ITALIC, 1, (255, 255, 255), 5) elif center_depart<0: cv2.putText(img, 'Vehicle is {}m left of center'.format(-center_depart), (20, 100), cv2.FONT_ITALIC, 1, (255, 255, 255), 5) else: cv2.putText(img, 'Vehicle is in the center', (20, 100), cv2.FONT_ITALIC, 1, (255, 255, 255), 5) return img if __name__ == "__main__": ret, mtx, dist, rvecs, tvecs = cal_calibrate_params(file_paths) #透视变换 #获取原图的四个点 img = cv2.imread('./test/straight_lines2.jpg') points = [[601, 448], [683, 448], [230, 717], [1097, 717]] #将四个点绘制到图像上 (文件,坐标起点,坐标终点,颜色,连接起来) img = cv2.line(img, (601, 448), (683, 448), (0, 0, 255), 3) img = cv2.line(img, (683, 448), (1097, 717), (0, 0, 255), 3) img = cv2.line(img, (1097, 717), (230, 717), (0, 0, 255), 3) img = cv2.line(img, (230, 717), (601, 448), (0, 0, 255), 3) #透视变换的矩阵 M,M_inverse = cal_perspective_params(img,points) #计算车道线的中心距离 lane_center = cal_line_center(img)