Linux内核13_1-进程切换是对FPU单元的处理_X86

简介: Linux内核13_1-进程切换是对FPU单元的处理_X86

每一种技术的出现必然是因为某种需求。正因为人的本性是贪婪的,所以科技的创新才能日新月异。


1 简介


从英特尔80486DX开始,算术浮点单元(FPU)就已经被集成到CPU中了。但是之所以还继续使用数学协处理器,是因为以前使用专用芯片进行浮点运算,所以这算是旧习惯的沿用吧。为了与旧CPU架构模型兼容,指令的使用方式与整数运算一样,只是使用了转义指令,也就是在原有的指令基础上加上前缀,组成新的指令,这些前缀的范围是0xd8-0xdf。使用这些指令可以操作CPU中的浮点寄存器。很显然,使用这些浮点运算指令的进程在进程切换的时候,需要保存属于它的硬件上下文中的浮点寄存器内容。

随后的奔腾系列处理器,因特尔引入了一组新的汇编指令。它们被称为MMX指令,用来支持多媒体应用的加速执行。MMX指令也是作用于FPU单元的浮点寄存器。这样的设计缺点是,内核开发者无法混合使用转义浮点指令和MMX指令;优点是内核开发者可以使用相同的进程切换代码来保存浮点单元和MMX的状态。

MMX指令之所以能够加速多媒体应用的执行,是因为它们在处理器中专门引入了单指令多数据(SIMD)指令流水线。奔腾III扩展了SIMD指令:引入了SSE扩展(单指令多数据流扩展),包含8个128位的寄存器,称为XMM寄存器,通过它们可以大大增加浮点数的处理。这些寄存器是独立的,和FPU和MMX寄存器没有重叠,所以SSE扩展和FPU/MMX指令可以混合使用。奔腾4又又引入了新的扩展:SSE2扩展,是在SSE基础上的扩展,支持更高精度的浮点数。SSE2扩展和SSE扩展使用相同的XMM寄存器。

X86微处理器不会自动在TSS中保存FPU、MMX和XMM寄存器。但是,从硬件上,支持内核只保存所需要的寄存器。具体方法就是在cr0寄存器中包含一个TS(任务切换)标志,标志设置的时机如下所示:

  • 每次执行硬件上下文切换,TS标志被置。
  • 每次执行ESCAPE、MMX、SSE或SSE2指令,同时TS标志被置,则控制单元就会发出Device not available的异常。

从上面可以看出,只有执行浮点运算的时候才需要保存FPU、MMX和XMM相关寄存器。假设进程A正在使用协处理器,当进程A切换到进程B的时候,内核设置TS标志,且把浮点寄存器保存到进程A的任务状态段(TSS)中。如果进程B没有使用协处理器,内核不需要恢复浮点寄存器的内容。但只要进程B想要执行浮点运算或多媒体指令,CPU就会发出Device not available异常,这个异常对应的处理程序就会把浮点寄存器中的值加载到进程B的TSS段中。


2 FPU相关数据结构


Linux内核是使用什么数据结构表示FPU、MMX和XMM这些需要保存的寄存器值呢?基于x86架构的Linux内核使用i387_union类型的变量thread.i387存储这些值,该变量位于进程描述符中。i387_union如下所示:

union i387_union {
    struct i387_fsave_struct fsave;
    struct i387_fxsave_struct fxsave;
    struct i387_soft_struct soft;
};

如代码所示,这个联合体包含三个不同类型的数据结构。没有协处理器的CPU模型使用i387_soft_struct类型数据结构,这是Linux为了兼容那些使用软件模拟协处理器的旧芯片。故我们在此,不做过多描述。带有协处理器和MMX单元的CPU模型使用i387_fsave_struct数据类型。带有SSE和SSE2扩展的CPU模型使用i387_fxsave_struct数据类型。


除此之外,进程描述符还包含另外2个标志:

  • TS_USEDFPU标志
    位于thread_info描述符的status成员中。表示正在进行的进程是否使用FPU、MMX或XMM寄存器。
  • PF_USED_MATH标志
    位于task_struct描述符中的flags成员中。表示存储在thread.i387中的数据是否有意义。该标志被清除的时候有两种情况:
  • 调用execve()系统调用,启动新进程的时候。因为控制单元绝不会再返回到之前的程序中,所以存储在thread.i387中的数据就没有了意义。
  • 用户态正在执行的程序开始执行信号处理程序的时候。因为信号处理程序相对于正在执行的程序流来说是异步的,此时的浮点寄存器对于信号处理程序也就没有了意义。但是需要内核为进程保存thread.i387中的浮点寄存器值,等到信号处理程序终止时再恢复这些寄存器值。也就是说,允许信号处理程序使用协处理器。


2 保存FPU寄存器


我们在分析进程切换的时候,知道主要的工作都是在__switch_to()宏中完成的。而在__switch_to()宏中,执行__unlazy_fpu宏,并将先前进程的进程描述符作为参数进行传递。这个宏会检查旧进程的TS_USEDFPU标志:如果标志被设置,说明旧进程使用了FPU、MMX、SSE或SSE2指令。因此,内核必须保存相关的硬件上下文,如下所示:

if (prev->thread_info->status & TS_USEDFPU)
    save_init_fpu(prev);

函数save_init_fpu()完成保存这些寄存器的基本工作,如下所示:

  1. 将FPU寄存器的内容保存到旧进程的描述符中,然后重新初始化FPU。如果CPU还使用了SSE/SSE2扩展,还需要保存XMM寄存器的内容,然后重新初始化SSE/SSE2单元。下面的2条GNU伪汇编语言实现:
asm volatile( "fxsave %0 ; fnclex"
    : "=m" (prev->thread.i387.fxsave) );
  1. 开启SSE/SSE2扩展,使用下面这条汇编语言:
asm volatile( "fnsave %0 ; fwait"
    : "=m" (prev->thread.i387.fsave) );
  1. 清除旧进程的TS_USEDFPU标志:
prev->thread_info->status &= ~TS_USEDFPU;
  1. 设置cr0协处理器的TS标志。使用stts()宏实现,该宏转换成汇编语言如下所示:
movl %cr0, %eax
orl $8,%eax
movl %eax, %cr0

4 加载FPU寄存器


新进程恢复执行的时候,浮点寄存器不能立即恢复。但是通过__unlazy_fpu()宏已经设置了cr0协处理器中的TS标志。所以,新进程第一次尝试执行ESCAPE、MMX或SSE/SSE2指令的时候,控制单元就会发出Device not available异常,内核中相关的异常处理程序就会执行math_state_restore()函数加载浮点寄存器等。新进程被标记为当前进程。

void math_state_restore()
{
    asm volatile ("clts");  /* 清除TS标志 */
    if (!(current->flags & PF_USED_MATH))
        init_fpu(current);
    restore_fpu(current);
    current->thread.status |= TS_USEDFPU;
}

该函数还会清除TS标志,以至于后来再执行FPU、MMX或SSE/SSE2指令的时候,不会再发出Device not available异常。如果PF_USED_MATH标志等于0,说明thread.i387中的内容没有意义了,init_fpu()就会复位thread.i387,并设置当前进程的PF_USED_MATH为1。然后,restore_fpu()就会把正确的值加载到FPU寄存器中。这个加载过程需要调用汇编指令fxrstor或frstor,使用哪一个取决于CPU是否支持SSE/SSE2扩展。最后,设置TS_USEDFPU标志,表示使用了浮点运算单元。


5 在内核中使用FPU、MMX和SSE/SSE2单元


当然了,内核中也可以使用FPU、MMX或SSE/SSE2硬件单元(虽然,大部分时候没有意义)。这样做的话,应该避免干扰当前用户进程执行的任何浮点运算。因此:

  • 在使用协处理器之前,内核必须调用kernel_fpu_begin(),继而调用save_init_fpu(),保存用户进程的浮点相关寄存器的内容。然后,清除cr0协处理器中的TS标志。
  • 使用完了之后,内核必须调用kernel_fpu_end(),设置TS标志。

之后,如果用户进程再执行协处理器指令的时候,math_state_restore()就会像进程切换时那样,恢复这些寄存器的内容。

但是,需要特别指出的是,如果当前用户进程正在使用协处理器时,kernel_fpu_begin()的执行时间相当长,甚至抵消了使用FPU、MMX或SSE/SSE2这些硬件单元带来的加速效果。事实上,内核只在几处地方使用它们,通常是搬动或清除大内存块或当计算校验的时候。


相关文章
|
17天前
|
算法 Linux 调度
深入理解Linux操作系统的进程管理
本文旨在探讨Linux操作系统中的进程管理机制,包括进程的创建、执行、调度和终止等环节。通过对Linux内核中相关模块的分析,揭示其高效的进程管理策略,为开发者提供优化程序性能和资源利用率的参考。
43 1
|
5天前
|
存储 监控 Linux
嵌入式Linux系统编程 — 5.3 times、clock函数获取进程时间
在嵌入式Linux系统编程中,`times`和 `clock`函数是获取进程时间的两个重要工具。`times`函数提供了更详细的进程和子进程时间信息,而 `clock`函数则提供了更简单的处理器时间获取方法。根据具体需求选择合适的函数,可以更有效地进行性能分析和资源管理。通过本文的介绍,希望能帮助您更好地理解和使用这两个函数,提高嵌入式系统编程的效率和效果。
46 13
|
12天前
|
SQL 运维 监控
南大通用GBase 8a MPP Cluster Linux端SQL进程监控工具
南大通用GBase 8a MPP Cluster Linux端SQL进程监控工具
|
16天前
|
算法 Linux
深入探索Linux内核的内存管理机制
本文旨在为读者提供对Linux操作系统内核中内存管理机制的深入理解。通过探讨Linux内核如何高效地分配、回收和优化内存资源,我们揭示了这一复杂系统背后的原理及其对系统性能的影响。不同于常规的摘要,本文将直接进入主题,不包含背景信息或研究目的等标准部分,而是专注于技术细节和实际操作。
|
16天前
|
存储 缓存 网络协议
Linux操作系统的内核优化与性能调优####
本文深入探讨了Linux操作系统内核的优化策略与性能调优方法,旨在为系统管理员和高级用户提供一套实用的指南。通过分析内核参数调整、文件系统选择、内存管理及网络配置等关键方面,本文揭示了如何有效提升Linux系统的稳定性和运行效率。不同于常规摘要仅概述内容的做法,本摘要直接指出文章的核心价值——提供具体可行的优化措施,助力读者实现系统性能的飞跃。 ####
|
17天前
|
监控 算法 Linux
Linux内核锁机制深度剖析与实践优化####
本文作为一篇技术性文章,深入探讨了Linux操作系统内核中锁机制的工作原理、类型及其在并发控制中的应用,旨在为开发者提供关于如何有效利用这些工具来提升系统性能和稳定性的见解。不同于常规摘要的概述性质,本文将直接通过具体案例分析,展示在不同场景下选择合适的锁策略对于解决竞争条件、死锁问题的重要性,以及如何根据实际需求调整锁的粒度以达到最佳效果,为读者呈现一份实用性强的实践指南。 ####
|
17天前
|
缓存 监控 网络协议
Linux操作系统的内核优化与实践####
本文旨在探讨Linux操作系统内核的优化策略与实际应用案例,深入分析内核参数调优、编译选项配置及实时性能监控的方法。通过具体实例讲解如何根据不同应用场景调整内核设置,以提升系统性能和稳定性,为系统管理员和技术爱好者提供实用的优化指南。 ####
|
20天前
|
负载均衡 算法 Linux
深入探索Linux内核调度机制:公平与效率的平衡####
本文旨在剖析Linux操作系统内核中的进程调度机制,特别是其如何通过CFS(完全公平调度器)算法实现多任务环境下资源分配的公平性与系统响应速度之间的微妙平衡。不同于传统摘要的概览性质,本文摘要将直接聚焦于CFS的核心原理、设计目标及面临的挑战,为读者揭开Linux高效调度的秘密。 ####
32 3
|
20天前
|
运维 监控 Linux
Linux操作系统的守护进程与服务管理深度剖析####
本文作为一篇技术性文章,旨在深入探讨Linux操作系统中守护进程与服务管理的机制、工具及实践策略。不同于传统的摘要概述,本文将以“守护进程的生命周期”为核心线索,串联起Linux服务管理的各个方面,从守护进程的定义与特性出发,逐步深入到Systemd的工作原理、服务单元文件编写、服务状态管理以及故障排查技巧,为读者呈现一幅Linux服务管理的全景图。 ####
|
22天前
|
消息中间件 安全 Linux
深入探索Linux操作系统的内核机制
本文旨在为读者提供一个关于Linux操作系统内核机制的全面解析。通过探讨Linux内核的设计哲学、核心组件、以及其如何高效地管理硬件资源和系统操作,本文揭示了Linux之所以成为众多开发者和组织首选操作系统的原因。不同于常规摘要,此处我们不涉及具体代码或技术细节,而是从宏观的角度审视Linux内核的架构和功能,为对Linux感兴趣的读者提供一个高层次的理解框架。