《数据科学:R语言实现》——3.11 检测缺失数据

简介:

本节书摘来自华章计算机《数据科学:R语言实现》一书中的第3章,第3.11节,作者 丘祐玮(David Chiu),更多章节内容可以访问云栖社区“华章计算机”公众号查看。

3.11 检测缺失数据

缺失数据背后有许多原因。例如,可能是由于录入或者数据处理过程中的瑕疵导致的。然而,如果数据分析过程使用了缺失数据,分析的结果可能有误导性。因此,在做进一步分析之前,检测缺失数据尤为重要。

准备工作

按照3.3节“转换数据类型”教程,把导入数据的每个属性转换成合适的数据类型。同时按照3.2节“重命名数据变量”中的步骤,命名employees和salaries数据集的列名。

实现步骤

执行下列步骤,检测缺失数据。

1.首先,我们把to_date属性设置一个超过2100-01-01的日期:
image

2.然后,把超过2100-01-01的日期变成缺失值:
image

3.接着,我们可以使用函数is.na找出哪一行包含缺失值:
image

4.我们也可以使用函数sum对to_date中的缺失值计数:
image

5.并且,我们可以计算缺失值的比例:
image

6.如果你想知道每一列中的缺失值比例,我们可以使用函数sapply:

image

7.我们可以安装加载Amelia程序包:
image

8.使用函数missmap绘制缺失值地图:
image

你会看到以下图形,如图1所示。

运行原理

在R中,缺失值经常使用NA标记出来,意思是不适用(not available)。大部分函数(例如mean或sum)在遇到数据集中的NA值时,会输出NA。尽管我们可以指定一个参数,例如na.rm,来移除NA的影响,但是最好还是在数据集中估计或移除缺失值,以避免缺失值带来的深远影响。

在本教程中,我们首先找出2100-01-01之后的数据记录。由于一个人的工资不可能在2100-01-01之后支付,我们可以把这些日期值看成是录入或者系统错误而导致的。因此,我们可以首先把这些值指定成缺失值(用NA表示)。然后,我们可以使用内置函数,搜索数据内部的缺失值。

image

为了找到数据集中的缺失值,我们首先对所有NA值个数加和,除以每个属性里的数值个数,然后借助sapply计算所有属性中的缺失值。

并且,为了使用表格展示计算结果,我们可以使用Amelia程序包,在一个图中绘制每个属性的缺失值地图。缺失值的可视化可以让用户更好地理解每个数据集的缺失比例。从图1中我们可以看出,1985包含的缺失值最多。

更多技能

对于缺失值处理,我们介绍了使用Amelia来可视化缺失值。除了在控制台输入命令,我们也可以使用Amelia的交互式GUI,AmeliaView。

要运行AmeliaView,只需在R控制台键入AmeliaView():
image

你会看到下列窗口,如图2所示。

相关文章
|
4月前
|
数据采集 机器学习/深度学习 数据可视化
R语言从数据到决策:R语言在商业分析中的实践
【9月更文挑战第1天】R语言在商业分析中的应用广泛而深入,从数据收集、预处理、分析到预测模型构建和决策支持,R语言都提供了强大的工具和功能。通过学习和掌握R语言在商业分析中的实践应用,我们可以更好地利用数据驱动企业决策,提升企业的竞争力和盈利能力。未来,随着大数据和人工智能技术的不断发展,R语言在商业分析领域的应用将更加广泛和深入,为企业带来更多的机遇和挑战。
|
4月前
R语言基于表格文件的数据绘制具有多个系列的柱状图与直方图
【9月更文挑战第9天】在R语言中,利用`ggplot2`包可绘制多系列柱状图与直方图。首先读取数据文件`data.csv`,加载`ggplot2`包后,使用`ggplot`函数指定轴与填充颜色,并通过`geom_bar`或`geom_histogram`绘图。参数如`stat`, `position`, `alpha`等可根据需要调整,实现不同系列的图表展示。
|
4月前
|
数据采集 数据可视化 数据挖掘
R语言在金融数据分析中的深度应用:探索数据背后的市场智慧
【9月更文挑战第1天】R语言在金融数据分析中展现出了强大的功能和广泛的应用前景。通过丰富的数据处理函数、强大的统计分析功能和优秀的可视化效果,R语言能够帮助金融机构深入挖掘数据价值,洞察市场动态。未来,随着金融数据的不断积累和技术的不断进步,R语言在金融数据分析中的应用将更加广泛和深入。
|
5月前
|
数据采集 存储 数据可视化
R语言时间序列分析:处理与建模时间序列数据的深度探索
【8月更文挑战第31天】R语言作为一款功能强大的数据分析工具,为处理时间序列数据提供了丰富的函数和包。从数据读取、预处理、建模到可视化,R语言都提供了灵活且强大的解决方案。然而,时间序列数据的处理和分析是一个复杂的过程,需要结合具体的应用场景和需求来选择合适的方法和模型。希望本文能为读者在R语言中进行时间序列分析提供一些有益的参考和启示。
|
3月前
|
数据挖掘 C语言 C++
R语言是一种强大的统计分析工具,提供了丰富的函数和包用于时间序列分析。
【10月更文挑战第21天】时间序列分析是一种重要的数据分析方法,广泛应用于经济学、金融学、气象学、生态学等领域。R语言是一种强大的统计分析工具,提供了丰富的函数和包用于时间序列分析。本文将介绍使用R语言进行时间序列分析的基本概念、方法和实例,帮助读者掌握R语言在时间序列分析中的应用。
65 3
|
8月前
|
数据可视化 数据挖掘 API
【R语言实战】聚类分析及可视化
【R语言实战】聚类分析及可视化
|
8月前
|
机器学习/深度学习 数据可视化
R语言逻辑回归logistic模型ROC曲线可视化分析2例:麻醉剂用量影响、汽车购买行为2
R语言逻辑回归logistic模型ROC曲线可视化分析2例:麻醉剂用量影响、汽车购买行为
|
5月前
|
机器学习/深度学习 数据采集 数据可视化
R语言在数据科学中的应用实例:探索与预测分析
【8月更文挑战第31天】通过上述实例,我们展示了R语言在数据科学中的强大应用。从数据准备、探索、预处理到建模与预测,R语言提供了完整的解决方案和丰富的工具集。当然,数据科学远不止于此,随着技术的不断发展和业务需求的不断变化,我们需要不断学习和探索新的方法和工具,以更好地应对挑战,挖掘数据的潜在价值。 未来,随着大数据和人工智能技术的普及,R语言在数据科学领域的应用将更加广泛和深入。我们期待看到更多创新的应用实例,为各行各业的发展注入新的动力。
|
5月前
|
资源调度 数据挖掘
R语言回归分析:线性回归模型的构建与评估
【8月更文挑战第31天】线性回归模型是统计分析中一种重要且实用的工具,能够帮助我们理解和预测自变量与因变量之间的线性关系。在R语言中,我们可以轻松地构建和评估线性回归模型,从而对数据背后的关系进行深入的探索和分析。
|
5月前
|
机器学习/深度学习 数据采集
R语言逻辑回归、GAM、LDA、KNN、PCA主成分分类分析预测房价及交叉验证
上述介绍仅为简要概述,每个模型在实施时都需要仔细调整与优化。为了实现高度精确的预测,模型选择与调参是至关重要的步骤,并且交叉验证是提升模型稳健性的有效途径。在真实世界的房价预测问题中,可能还需要结合地域经济、市场趋势等宏观因素进行综合分析。
95 3
下一篇
开通oss服务