目录
1.数据类型的介绍
1.1 类型的基本归类
2.整型在内存中的存储
2.1原码、反码、补码
2.2大小端介绍
几道有趣的题目
3.浮点数在内存中的存储
3.1引例
3.2浮点数存储规则
正文
1.数据类型的介绍
目前我们已经学习了基本的内置类型:
char //字符数据类型 short //短整型 int //整形 long //长整型 long long //更长的整形 float //单精度浮点数 double //双精度浮点数
以及他们所占存储空间的大小。
那么分这么多种的类型有何意义呢?
类型的意义:
1. 使用这个类型开辟内存空间的大小(大小决定了使用范围)。
2. 如何看待内存空间的视角
1.1 类型的基本归类
整型家族
char unsigned char signed char short unsigned short [int] signed short [int] int unsigned int signed int long unsigned long [int] signed long [int]
浮点数家族
float double
构造类型
> 数组类型 > 结构体类型 struct > 枚举类型 enum > 联合类型 union
指针类型
int *pi; char *pc; float* pf; void* pv;
空类型
void 表示空类型(无类型) 通常应用于函数的返回类型、函数的参数、指针类型。
2.整型在内存中的存储
我们之前讲过一个变量的创建是要在内存中开辟空间的。空间的大小是根据不同的类型而决定的。
那接下来我们谈谈数据在所开辟内存中到底是如何存储的?
比如:
int a = 20; int b = -10;
我们知道为 a 分配四个字节的空间。
那如何存储?
下来了解下面的概念:
2.1原码、反码、补码
计算机中的整数有三种表示方法,即原码、反码和补码。
三种表示方法均有 符号位 和 数值位 两部分,符号位都是用 0 表示 “ 正 ” ,用 1 表示 “ 负 ” ,而数值位
负整数的三种表示方法各不相同。
原码
直接将二进制按照正负数的形式翻译成二进制就可以。
反码
将原码的符号位不变,其他位依次按位取反就可以得到了。
补码
反码 +1 就得到补码。
正数的原、反、补码都相同。
对于整形来说:数据存放内存中其实存放的是补码。
为什么呢?
在计算机系统中,数值一律用补码来表示和存储。原因在于,使用补码,可以将符号位和数值域统一处理;同时,加法和减法也可以统一处理(CPU只有加法器 )此外,补码与原码相互转换,其运算过程是相同的,不需要额外的硬件电路。
我们看看在内存中的存储:
我们可以看到对于a和b分别存储的是补码。但是我们发现顺序有点不对劲。
通过我们刚刚的分析。-10在存储的时候应该是FFFFFFF6,而为什么我们看到的几乎是逆序的F6FFFFFF呢?(F与f相同,这里不必计较)
此处我们还需继续了解一下大小端。
2.2大小端介绍
什么大端小端:
大端(存储)模式,是指数据的低位保存在内存的高地址中,而数据的高位,保存在内存的低地址 中;
小端(存储)模式,是指数据的低位保存在内存的低地址中,而数据的高位 , ,保存在内存的高地 址中。
为什么有大端和小端:
为什么会有大小端模式之分呢?这是因为在计算机系统中,我们是以字节为单位的,每个地址单元
都对应着一个字节,一个字节为8bit。但是在C语言中除了8 bit的char之外,还有16 bit的short型,32 bit的long型(要看具体的编译器),另外,对于位数大于8位的处理器,例如16位或者32位的处理器,由于寄存器宽度大于一个字节,那么必然存在着一个如何将多个字节安排的问题。因此就导致了大端存储模式和小端存储模式。
例如:一个 16bit 的 short 型 x ,在内存中的地址为 0x0010 , x 的值为 0x1122 ,那么 0x11 为高字节, 0x22 为低字节。对于大端模式,就将 0x11 放在低地址中,即 0x0010 中, 0x22 放在高地址中,即 0x0011 中。小端模式, 刚好相反。我们常用的 X86 结构是小端模式,而 KEIL C51 则为大端模式。
很多的 ARM , DSP 都为小端模式。有些 ARM 处理器还可以由硬件来选择是大端模式还是小端模式。
百度2015年系统工程师笔试题:
请简述大端字节序和小端字节序的概念,设计一个小程序来判断当前机器的字节序。( 10 分)
提示:巧妙运用位操作符
答案如下:
#include <stdio.h> int check_sys() { int i = 1; return (*(char*)&i); } int main() { int ret = check_sys(); if (ret == 1) { printf("小端\n"); } else { printf("大端\n"); } return 0; }
几道有趣的题目
1. //输出什么? #include <stdio.h> int main() { char a = -1; signed char b = -1; unsigned char c = -1; printf("a=%d,b=%d,c=%d", a, b, c); return 0; }
2. #include <stdio.h> int main() { char a = -128; printf("%u\n", a); return 0; }
3. #include <stdio.h> int main() { char a = 128; printf("%u\n", a); return 0; }
不会做的小伙伴可以私信我~
3.浮点数在内存中的存储
常见的浮点数:
3.14159
1E10
浮点数家族包括: float、double、long double 类型。
3.1引例
#include<stdio.h> int main() { int n = 9; float* pFloat = (float*)&n; printf("n的值为:%d\n", n); printf("*pFloat的值为:%f\n", *pFloat); *pFloat = 9.0; printf("num的值为:%d\n", n); printf("*pFloat的值为:%f\n", *pFloat); return 0; }
我们先猜一猜结果
输出如下:
既然心存疑惑那就跟着我一起看看浮点数的存储规则吧。
3.2浮点数存储规则
num 和 *pFloat 在内存中明明是同一个数,为什么浮点数和整数的解读结果会差别这么大?
要理解这个结果,一定要搞懂浮点数在计算机内部的表示方法。
详细解读:
根据国际标准IEEE(电气和电子工程协会) 754,任意一个二进制浮点数V可以表示成下面的形式:
(-1)^S * M * 2^E (-1)^s表示符号位,当s=0,V为正数;当s=1,V为负数。 M表示有效数字,大于等于1,小于2。 2^E表示指数位。
举例来说:
十进制的 5.0 ,写成二进制是 101.0 ,相当于 1.01×2^2 。
那么,按照上面V 的格式,可以得出 s=0 , M=1.01 , E=2 。
十进制的 -5.0 ,写成二进制是 - 101.0 ,相当于 - 1.01×2^2 。那么, s=1 , M=1.01 , E=2 。
IEEE 754 规定:
对于 32 位的浮点数(单精度),最高的 1 位是符号位 s ,接着的 8 位是指数 E ,剩下的 23 位为有效数字 M 。
IEEE 754 对有效数字 M 和指数 E ,还有一些特别规定。
前面说过, 1≤M<2 ,也就是说, M 可以写成 1.xxxxxx 的形式,其中 xxxxxx 表示小数部分。
IEEE 754 规定,在计算机内部保存 M 时,默认这个数的第一位总是 1 ,因此可以被舍去,只保存后
面的xxxxxx部分。比如保存 1.01 的时候,只保存01 ,等到读取的时候,再把第一位的 1 加上去。这样做的目的,是节省 1 位有效数字。以 32 位浮点数为例,留给M 只有 23 位,将第一位的1 舍去后等于可以保存 24 位有效数字。
至于指数 E ,情况就比较复杂。
首先, E 为一个无符号整数( unsigned int )
这意味着,如果 E 为 8 位,它的取值范围为 0~255 ;如果 E 为 11 位,它的取值范围为 0~2047 。但是我们知道,科学计数法中的E 是可以出现负数的,所以IEEE 754 规定,存入内存时 E 的真实值必须再加上一个中间数,对于 8 位的 E ,这个中间数是127 ;对于 11 位的 E ,这个中间数是1023 。比如 2^10
的 E 是 10 ,所以保存成 32 位浮点数时,必须保存成 10+127=137 ,即10001001。
然后,指数E 从内存中取出还可以再分成三种情况:
E 不全为 0 或不全为 1 这时,浮点数就采用下面的规则表示,即指数 E 的计算值减去 127 (或 1023 ),得到真实值,再将有效数字M 前加上第一位的 1 。 比如: 0.5 ( 1/2 )的二进制形式为 0.1 ,由于规定正数部分必须为 1 ,即将小数点右移 1 位,则为 1.0*2^(-1) ,其阶码为 -1+127=126 ,表示为01111110,而尾数 1.0 去掉整数部分为 0 ,补齐 0 到 23 位 00000000000000000000000,则其二进制表示形式为: 0 01111110 00000000000000000000000
E 全为 0 这时,浮点数的指数 E 等于 1-127 (或者 1-1023 )即为真实值,有效数字M 不再加上第一位的 1 ,而是还原为 0.xxxxxx 的小数。这样做是为了表示 ±0 ,以及接近于0的很小的数字。
E 全为 1 这时,如果有效数字 M 全为 0 ,表示 ± 无穷大(正负取决于符号位 s );
好了,关于浮点数的表示规则,就说到这里。
解释前面的题目:
下面,让我们回到一开始的问题:为什么 0x00000009 还原成浮点数,就成了 0.000000 ?
首先,将 0x00000009 拆分,得到第一位符号位 s=0 ,后面 8 位的指数 E=00000000 ,最后 23 位有
效数字M=000 0000 0000 0000 0000 1001。
9 -> 0000 0000 0000 0000 0000 0000 0000 1001
由于指数 E 全为 0 ,所以符合上一节的第二种情况。因此,浮点数 V 就写成:
V=( - 1)^0 × 0.00000000000000000001001×2^( - 126)=1.001×2^( - 146)
显然, V 是一个很小的接近于 0 的正数,所以用十进制小数表示就是 0.000000 。
再看例题的第二部分。
请问浮点数 9.0 ,如何用二进制表示?还原成十进制又是多少?
首先,浮点数9.0 等于二进制的 1001.0 ,即 1.001×2^3。
9.0 -> 1001.0 -> ( - 1 ) ^0 1 . 001 2 ^3 -> s = 0 , M = 1.001 , E = 3 + 127 = 130
那么,第一位的符号位 s=0 ,有效数字 M 等于 001 后面再加 20 个 0 ,凑满 23 位,指数 E 等于
3+127=130 ,即10000010 。
所以,写成二进制形式,应该是 s+E+M ,即
0 10000010 001 0000 0000 0000 0000 0000
这个32位的二进制数,还原成十进制,正是 1091567616 。
本章完!