彻底理解 HashMap 及 LinkedHashMap,面试官请随便问!(2)

简介: 彻底理解 HashMap 及 LinkedHashMap,面试官请随便问!

对于hash函数,具体的来看下源码

static final int hash(Object key) {
    int h;
    return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
}

以上可以看到key==null时,直接返回0,所以HashMap中键为NULL的键值对,一定在第一个桶中。


h >>> 16是用来取出h的高16位(>>>是无符号右移) 如下展示:


0000 0100 1011 0011  1101 1111 1110 0001


>>> 16


0000 0000 0000 0000  0000 0100 1011 0011



通过之前putVal的源码可以知道,HashMap是用(length - 1) & hash来计算数组下标的。绝大多数情况下length一般都小于2^16即小于65536。所以hash & (length-1);结果始终是hash的低16位与(length-1)进行&运算。要是能让hash的高16位也参与运算,会让得到的下标更加散列。


如何让高16也参与运算呢。方法就是让hashCode()和自己的高16位进行^运算。由于与运单和或运单都会使得结果偏向0或者1,并不是均匀的概念,所以用异或。


结合源码来看HashMap的get操作:


public V get(Object key) {
    Node<K,V> e;
    return (e = getNode(hash(key), key)) == null ? null : e.value;
}
final Node<K,V> getNode(int hash, Object key) {
    Node<K,V>[] tab; Node<K,V> first, e; int n; K k;
    if ((tab = table) != null && (n = tab.length) > 0 &&
        (first = tab[(n - 1) & hash]) != null) {
        if (first.hash == hash && // always check first node
            ((k = first.key) == key || (key != null && key.equals(k))))
            return first;
        if ((e = first.next) != null) {
         //如果是红黑树,就调用树的查找方法,否则遍历链表直到找到
            if (first instanceof TreeNode)
                return ((TreeNode<K,V>)first).getTreeNode(hash, key);
            do {
                if (e.hash == hash &&
                    ((k = e.key) == key || (key != null && key.equals(k))))
                    return e;
            } while ((e = e.next) != null);
        }
    }
    return null;
}

在这里能够根据key快速的取到value,除了和HashMap的数据结构密不可分外,还和Node有莫大的关系。在前面就已经提到过,HashMap在存储过程中并没有将key/value分开来存储,而是当做一个整体key-value来处理的,这个整体就是Node对象。


1.4 为什么HashMap的底层数组长度总是2的n次方

当底层数组的length为2的n次方时, hash & (length - 1)就相当于对length取模,其效率要比直接取模高得多,这是HashMap在效率上的一个优化。


我们希望HashMap中的元素存放的越均匀越好。最理想的效果是,Node数组中每个位置都只有一个元素,这样,查询的时候效率最高,不需要遍历单链表,也不需要通过equals去比较Key,而且空间利用率最大。


那如何计算才会分布最均匀呢?正如上一节提到的,HashMap采用了一个分两步走的哈希策略:


使用hash()方法对Key的hashCode进行重新计算,以防止质量低下的hashCode()函数实现。由于HashMap的支撑数组长度总是2的倍数,通过右移可以使低位的数据尽量的不同,从而使Key的hash值的分布尽量均匀;使用hash & (length - 1)方法进行取余运算,以使每个键值对的插入位置尽量分布均匀;由于length是2的整数幂,length-1的低位就全是1,高位全部是0。在与hash值进行低位&运算时,低位的值总是与原来hash值相同,高位&运算时值为0。这就保证了不同的hash值发生碰撞的概率比较小,这样就会使得数据在table数组中分布较均匀,查询速度也较快。


1.5 HashMap的扩容

随着HashMap中元素的数量越来越多,发生碰撞的概率将越来越大,所产生的子链长度就会越来越长,这样势必会影响HashMap的存取速度。为了保证HashMap的效率,系统必须要在某个临界点进行扩容处理,该临界点就是HashMap中元素的数量在数值上等于threshold(table数组长度*加载因子)。但是,不得不说,扩容是一个非常耗时的过程,因为它需要重新计算这些元素在新table数组中的位置并进行复制处理。


首先回答一个问题,在插入一个临界节点时,HashMap是先扩容后插入还是先插入后扩容?这样选取的优势是什么?


答案是:先插入后扩容。通过查看putVal方法的源码可以发现是先执行完新节点的插入后,然后再做size是否大于threshold的判断的。


final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
               boolean evict) {
  ...
    //如果插入新结点后的size超过了临界值,就扩容,注意是先插入节点再扩容
    if (++size > threshold)
        resize();
    //在hashMap中,afterNodeInsertion方法体为空,交给子类去实现
    afterNodeInsertion(evict);
    return null;
}




为什么是先插入后扩容?源码已经很清楚的表达了扩容原因,调用put不一定是新增数据,还可能是覆盖掉原来的数据,这里就存在一个key的比较问题。以先扩容为例,先比较是否是新增的数据,再判断增加数据后是否要扩容,这样比较会浪费时间,而先插入后扩容,就有可能在中途直接通过return返回了(本次put是覆盖操作,size不变不需要扩容),这样可以提高效率的。


JDK1.8相对于JDK1.7对HashMap的实现有较大改进,做了很多优化,链表转红黑树是其中的一项,其实扩容方法JDK1.8也有优化,与JDK1.7有较大差别。


JDK1.8中resize方法源码如下:


final Node<K,V>[] resize() {
    Node<K,V>[] oldTab = table;
    int oldCap = (oldTab == null) ? 0 : oldTab.length;
    int oldThr = threshold;
    int newCap, newThr = 0;
    if (oldCap > 0) {
     // 原来的容量就已经超过最大值就不再扩容了,就只好随你碰撞去吧
        if (oldCap >= MAXIMUM_CAPACITY) {
            threshold = Integer.MAX_VALUE;
            return oldTab;
        }
        // 没超过最大值,就扩容为原来的2倍
        else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
                 oldCap >= DEFAULT_INITIAL_CAPACITY)
            newThr = oldThr << 1; // double threshold
    }
    else if (oldThr > 0) // initial capacity was placed in threshold
        newCap = oldThr;
    else {               // zero initial threshold signifies using defaults
        newCap = DEFAULT_INITIAL_CAPACITY;
        newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
    }
    // 计算新的resize上限,即新的threshold值
    if (newThr == 0) {
        float ft = (float)newCap * loadFactor;
        newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
                  (int)ft : Integer.MAX_VALUE);
    }
    threshold = newThr;
    @SuppressWarnings({"rawtypes","unchecked"})
        Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
    table = newTab;
    if (oldTab != null) {
     // 把旧的bucket都移动到新的buckets中
        for (int j = 0; j < oldCap; ++j) {
            Node<K,V> e;
            if ((e = oldTab[j]) != null) {
                oldTab[j] = null;
                if (e.next == null)
                    newTab[e.hash & (newCap - 1)] = e;
                else if (e instanceof TreeNode)
                    ((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
                else { // preserve order
                    Node<K,V> loHead = null, loTail = null;
                    Node<K,V> hiHead = null, hiTail = null;
                    Node<K,V> next;
                    do {
                        next = e.next;
                        //原来的桶索引值
                        if ((e.hash & oldCap) == 0) {
                            if (loTail == null)
                                loHead = e;
                            else
                                loTail.next = e;
                            loTail = e;
                        }
                        else {
                            if (hiTail == null)
                                hiHead = e;
                            else
                                hiTail.next = e;
                            hiTail = e;
                        }
                    } while ((e = next) != null);
                    // 扩容后,键值对在新table数组中的位置与旧数组中一样
                    if (loTail != null) {
                        loTail.next = null;
                        newTab[j] = loHead;
                    }
                    // 扩容后,键值对在新table数组中的位置与旧数组中不一样
                    // 新的位置=原来的位置 + oldCap
                    if (hiTail != null) {
                        hiTail.next = null;
                        newTab[j + oldCap] = hiHead;
                    }
                }
            }
        }
    }
    return newTab;
}



必要的位置已经加了注释。最让人疑惑的有两个点:


为什么(e.hash & oldCap)== 0时就放入lo链表,否则就是hi链表; 为什么 j + oldCap就是键值对在新的table数组中的位置;其实这里包含着一些数学技巧。类似于上一小节为什么HashMap中数组的长度总是取2的整数次幂。


查看源码,我们发现扩容时,使用的是2次幂的扩展即长度扩为原来2倍,所以,元素的位置要么是在原位置,要么是在原位置再移动2次幂的位置。看下图可以明白这句话的意思,n为table的长度,图中上半部分表示扩容前的key1和key2两个Node的索引位置,图中下半部分表示扩容后key1和key2两个Node新的索引位置。


image.png


元素在重新计算hash之后,因为n变为2倍,那么n-1在高位多1bit,因此新的index就会发生这样的变化:


image.png


因此,我们在扩充HashMap的时候,不需要像JDK1.7的实现那样重新hash,只需要看看原来的hash值新增的那个bit是1还是0就好了,是0的话索引没变,是1的话索引变成“原索引+oldCap”,这个设计确实非常的巧妙,既省去了重新hash值的时间,而且同时,由于新增的1bit是0还是1可以认为是随机的,因此resize的过程,均匀的把之前的冲突的节点分散到新的bucket了,这一块就是JDK1.8新增的优化点。


1.6 HashMap为什么引入红黑树而不是AVL树


首先要说明的是引入红黑树是了防止多次发生hash冲突时,链表长度过长,查找的时间复杂度会变成O(N),同时同一位置再次发生hash冲突时采用尾插法插入的时间复杂度也会变成O(N)。用了红黑树可以把查找以及插入的时间复杂度都降低成O(logN)。


那么接下来问题就变成了:有了二叉查找树、平衡树(AVL)为啥还需要红黑树?


二叉查找树,也称有序二叉树(ordered binary tree),或已排序二叉树(sorted binary tree),是指一棵空树或者具有下列性质的二叉树:


若任意节点的左子树不空,则左子树上所有结点的值均小于它的根结点的值;若任意节点的右子树不空,则右子树上所有结点的值均大于它的根结点的值;任意节点的左、右子树也分别为二叉查找树; 没有键值相等的节点(no duplicate nodes) 因为一棵由N个结点随机构造的二叉查找树的高度为logN,所以顺理成章,二叉查找树的一般操作的执行时间为O(logN)。但二叉查找树若退化成了一棵具有N个结点的线性链后,则这些操作最坏情况运行时间为O(N)。可想而知,我们不能让这种情况发生,为了解决这个问题,于是我们引申出了平衡二叉树,即AVL树,它对二叉查找树做了改进,在我们每插入一个节点的时候,必须保证每个节点对应的左子树和右子树的树高度差不超过1。如果超过了就对其进行左旋或右旋,使之平衡。


虽然平衡树解决了二叉查找树退化为近似链表的缺点,能够把查找时间控制在 O(logN),不过却不是最佳的,因为平衡树要求每个节点的左子树和右子树的高度差至多等于1,这个要求实在是太严了,导致每次进行插入/删除节点的时候,几乎都会破坏平衡树的规则,进而我们都需要通过左旋和右旋来进行调整,使之再次成为一颗符合要求的平衡树。


显然,如果在那种插入、删除很频繁的场景中,平衡树需要频繁着进行调整,这会使平衡树的性能大打折扣,为了解决这个问题,于是有了红黑树。红黑树是不符合AVL树的平衡条件的,即每个节点的左子树和右子树的高度最多差1的二叉查找树,但是提出了为节点增加颜色,红黑树是用非严格的平衡来换取增删节点时候旋转次数的降低,任何不平衡都会在三次旋转之内解决,相较于AVL树为了维持平衡的开销要小得多。


AVL树是严格平衡树,因此在增加或者删除节点的时候,根据不同情况,旋转的次数比红黑树要多,所以红黑树的插入效率相对于AVL树更高。单单在查找方面比较效率的话,由于AVL高度平衡,因此AVL树的查找效率比红黑树更高。


对主要的几种平衡树作个比较,发现红黑树有着良好的稳定性和完整的功能,性能表现也很不错,综合实力强,在诸如STL的场景中需要稳定表现。实际应用中,若搜索的频率远远大于插入和删除,那么选择AVL,如果发生搜索和插入删除操作的频率差不多,应该选择红黑树。



相关文章
|
17天前
|
存储 Java 索引
HashMap高频面试题,让你掌握青铜回答与王者级回答,你值得拥有
《HashMap高频面试题,让你掌握青铜回答与王者级回答,你值得拥有》介绍了HashMap的实现原理、数据存储、哈希冲突处理及扩容机制。文章通过对比JDK 1.7和JDK 1.8版本,详细解析了不同版本中的链表与红黑树结构、Entry与Node的区别,以及put()方法的具体实现。特别指出JDK 1.8引入红黑树优化查询性能,并采用尾插法避免多线程环境下的链表环问题。负载因子和扩容机制确保了HashMap在不同场景下的高效运行。
33 2
|
3月前
|
存储 Java API
详细解析HashMap、TreeMap、LinkedHashMap等实现类,帮助您更好地理解和应用Java Map。
【10月更文挑战第19天】深入剖析Java Map:不仅是高效存储键值对的数据结构,更是展现设计艺术的典范。本文从基本概念、设计艺术和使用技巧三个方面,详细解析HashMap、TreeMap、LinkedHashMap等实现类,帮助您更好地理解和应用Java Map。
78 3
|
3月前
|
存储 算法 安全
HashMap常见面试题(超全面):实现原理、扩容机制、链表何时升级为红黑树、死循环
HashMap常见面试题:红黑树、散列表,HashMap实现原理、扩容机制,HashMap的jd1.7与jdk1.8有什么区别,寻址算法、链表何时升级为红黑树、死循环
|
5月前
|
存储 安全 Java
一天十道Java面试题----第二天(HashMap和hashTable的区别--------》sleep、wait、join)
这篇文章是关于Java面试的第二天笔记,涵盖了HashMap与HashTable的区别、ConcurrentHashMap的实现原理、IOC容器的实现方法、字节码的概念和作用、Java类加载器的类型、双亲委派模型、Java异常体系、GC如何判断对象可回收、线程的生命周期及状态,以及sleep、wait、join、yield的区别等十道面试题。
一天十道Java面试题----第二天(HashMap和hashTable的区别--------》sleep、wait、join)
|
5月前
|
安全 Java
【Java集合类面试十五】、说一说HashMap和HashTable的区别
HashMap和Hashtable的主要区别在于Hashtable是线程安全的,不允许null键和值,而HashMap是非线程安全的,允许null键和值。
|
5月前
|
存储 Java
HashMap与LinkedHashMap类型集合
【8月更文挑战第4天】`HashMap` 是基于哈希表实现的键值对存储结构,提供快速的查找、插入和删除操作,但不保证元素顺序。适用于不关心顺序且需高效操作的场景。 `LinkedHashMap` 继承自 `HashMap`,保持了元素的插入或访问顺序。适合需要按特定顺序遍历元素的应用,如按添加顺序显示购物车商品。其操作效率与 `HashMap` 相近。
|
8月前
|
存储 算法 Java
如果面试也能这样说HashMap,那么就不会有那么多遗憾!(中)
如果面试也能这样说HashMap,那么就不会有那么多遗憾!
51 0
|
7月前
|
存储 安全 Java
《ArrayList & HashMap 源码类基础面试题》面试官们最喜欢问的ArrayList & HashMap源码类初级问,你都会了?
《ArrayList & HashMap 源码类基础面试题》面试官们最喜欢问的ArrayList & HashMap源码类初级问,你都会了?
47 0
|
8月前
|
Python
2024年Python最新刷爆全网的动态条形图,原来5行Python代码就能实现!,2024年最新Python面试必问的HashMap
2024年Python最新刷爆全网的动态条形图,原来5行Python代码就能实现!,2024年最新Python面试必问的HashMap
2024年Python最新刷爆全网的动态条形图,原来5行Python代码就能实现!,2024年最新Python面试必问的HashMap
|
8月前
|
存储 算法 Java
耗时3天写完的HashMap万字解析,争取一篇文章讲透它,面试官看了都直点头!
耗时3天写完的HashMap万字解析,争取一篇文章讲透它,面试官看了都直点头!
102 3