《Python自动化运维:技术与最佳实践》一1.3 DNS处理模块dnspython

本文涉及的产品
全局流量管理 GTM,标准版 1个月
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
云解析 DNS,旗舰版 1个月
简介:

本节书摘来自华章出版社《Python自动化运维:技术与最佳实践》一书中的第1章,第1.3节,作者 (美)Neil Bergman ,更多章节内容可以访问云栖社区“华章计算机”公众号查看

1.3 DNS处理模块dnspython

dnspython(http://www.dnspython.org/)是Python实现的一个DNS工具包,它支持几乎所有的记录类型,可以用于查询、传输并动态更新ZONE信息,同时支持TSIG(事务签名)验证消息和EDNS0(扩展DNS)。在系统管理方面,我们可以利用其查询功能来实现DNS服务监控以及解析结果的校验,可以代替nslookup及dig等工具,轻松做到与现有平台的整合,下面进行详细介绍。
首先介绍dnspython模块的安装,这里采用源码的安装方式,最新版本为1.9.4,如下:

# http://www.dnspython.org/kits/1.9.4/dnspython-1.9.4.tar.gz
# tar -zxvf dnspython-1.9.4.tar.gz
# cd dnspython-1.9.4
# python setup.py install

1.3.1 模块域名解析方法详解

dnspython模块提供了大量的DNS处理方法,最常用的方法是域名查询。dnspython提供了一个DNS解析器类—resolver,使用它的query方法来实现域名的查询功能。query方法的定义如下:
query(self, qname, rdtype=1, rdclass=1, tcp=False, source=None, raise_on_no_answer=True, source_port=0)
其中,qname参数为查询的域名。rdtype参数用来指定RR资源的类型,常用的有以下几种:
A记录,将主机名转换成IP地址;
MX记录,邮件交换记录,定义邮件服务器的域名;
CNAME记录,指别名记录,实现域名间的映射;
NS记录,标记区域的域名服务器及授权子域;
PTR记录,反向解析,与A记录相反,将IP转换成主机名;
SOA记录,SOA标记,一个起始授权区的定义。
rdclass参数用于指定网络类型,可选的值有IN、CH与HS,其中IN为默认,使用最广泛。tcp参数用于指定查询是否启用TCP协议,默认为False(不启用)。source与source_port参数作为指定查询源地址与端口,默认值为查询设备IP地址和0。raise_on_no_answer参数用于指定当查询无应答时是否触发异常,默认为True。

1.3.2 常见解析类型示例说明

常见的DNS解析类型包括A、MX、NS、CNAME等。利用dnspython的dns.resolver. query方法可以简单实现这些DNS类型的查询,为后面要实现的功能提供数据来源,比如对一个使用DNS轮循业务的域名进行可用性监控,需要得到当前的解析结果。下面一一进行介绍。
(1)A记录
实现A记录查询方法源码。

【/home/test/dnspython/simple1.py】
#!/usr/bin/env python
import dns.resolver

domain = raw_input('Please input an domain: ')    #输入域名地址
A = dns.resolver.query(domain, 'A')    #指定查询类型为A记录
for i in A.response.answer:    #通过response.answer方法获取查询回应信息
    for j in i.items:    #遍历回应信息
printj.address

运行代码查看结果,这里以www.google.com域名为例:

# python simple1.py 
Please input an domain: www.google.com
173.194.127.180
173.194.127.178
173.194.127.176
173.194.127.179
173.194.127.177

(2)MX记录
实现MX记录查询方法源码。

【/home/test/dnspython/ simple2.py】
#!/usr/bin/env python
import dns.resolver

domain = raw_input('Please input an domain: ')
MX = dns.resolver.query(domain, 'MX')    #指定查询类型为MX记录
for i in MX:    #遍历回应结果,输出MX记录的preference及exchanger信息
   print 'MX preference =', i.preference, 'mail exchanger =', i.exchange

运行代码查看结果,这里以163.com域名为例:

# python simple2.py 
Please input an domain: 163.com
MX preference = 10 mail exchanger = 163mx03.mxmail.netease.com.
MX preference = 50 mail exchanger = 163mx00.mxmail.netease.com.
MX preference = 10 mail exchanger = 163mx01.mxmail.netease.com.
MX preference = 10 mail exchanger = 163mx02.mxmail.netease.com.

(3)NS记录
实现NS记录查询方法源码。

【/home/test/dnspython/ simple3.py】
#!/usr/bin/env python
import dns.resolver

domain = raw_input('Please input an domain: ')
ns = dns.resolver.query(domain, 'NS')    #指定查询类型为NS记录
for i in ns.response.answer:
   for j in i.items:
      print j.to_text()
只限输入一级域名,如baidu.com。如果输入二级或多级域名,如www.baidu.com,则是错误的。
# python simple3.py 
Please input an domain: baidu.com
ns4.baidu.com.
dns.baidu.com.
ns2.baidu.com.
ns7.baidu.com.
ns3.baidu.com.
(4)CNAME记录
实现CNAME记录查询方法源码。
【/home/test/dnspython/ simple4.py】
#!/usr/bin/env python
import dns.resolver

domain = raw_input('Please input an domain: ')
cname = dns.resolver.query(domain, 'CNAME')   #指定查询类型为CNAME记录
for i in cname.response.answer:    #结果将回应cname后的目标域名
   for j in i.items:
      print j.to_text()
结果将返回cname后的目标域名。

1.3.3 实践:DNS域名轮循业务监控

大部分的DNS解析都是一个域名对应一个IP地址,但是通过DNS轮循技术可以做到一个域名对应多个IP,从而实现最简单且高效的负载平衡,不过此方案最大的弊端是目标主机不可用时无法被自动剔除,因此做好业务主机的服务可用监控至关重要。本示例通过分析当前域名的解析IP,再结合服务端口探测来实现自动监控,在域名解析中添加、删除IP时,无须对监控脚本进行更改。实现架构图如图1-1所示。

image

  1. 步骤
    1)实现域名的解析,获取域名所有的A记录解析IP列表;

2)对IP列表进行HTTP级别的探测。

  1. 代码解析
    本示例第一步通过dns.resolver.query()方法获取业务域名A记录信息,查询出所有IP地址列表,再使用httplib模块的request()方法以GET方式请求监控页面,监控业务所有服务的IP是否服务正常。
【/home/test/dnspython/simple5.py】
#!/usr/bin/python
import dns.resolver
import os
import httplib

iplist=[]    #定义域名IP列表变量
appdomain="www.google.com.hk"    #定义业务域名

def get_iplist(domain=""):    #域名解析函数,解析成功IP将被追加到iplist
    try:
        A = dns.resolver.query(domain, 'A')    #解析A记录类型
    except Exception,e:
        print "dns resolver error:"+str(e)
        return
    for i in A.response.answer:
        for j in i.items:
            iplist.append(j.address)    #追加到iplist
    return True

def checkip(ip):
    checkurl=ip+":80"
    getcontent=""
    httplib.socket.setdefaulttimeout(5)    #定义http连接超时时间(5秒)
    conn=httplib.HTTPConnection(checkurl)    #创建http连接对象

    try:
        conn.request("GET", "/",headers = {"Host": appdomain})  #发起URL请求,添
                                                                #加host主机头
        r=conn.getresponse()
        getcontent =r.read(15)   #获取URL页面前15个字符,以便做可用性校验
    finally:
        if getcontent=="<!doctype html>":  #监控URL页的内容一般是事先定义好的,比如
                                           #“HTTP200”等
            print ip+" [OK]"
        else:
            print ip+" [Error]"    #此处可放告警程序,可以是邮件、短信通知

if __name__=="__main__":
    if get_iplist(appdomain) and len(iplist)>0:    #条件:域名解析正确且至少返回一个IP
        for ip in iplist:
            checkip(ip)
    else:
        print "dns resolver error."

我们可以将此脚本放到crontab中定时运行,再结合告警程序,这样一个基于域名轮循的业务监控已完成。运行程序,显示结果如下:

# python simple5.py 
74.125.31.94 [OK]
74.125.128.199 [OK]
173.194.72.94 [OK]

从结果可以看出,域名www.google.com.hk解析出3个IP地址,并且服务都是正常的。

相关文章
|
2天前
|
JavaScript 前端开发 Android开发
【03】仿站技术之python技术,看完学会再也不用去购买收费工具了-修改整体页面做好安卓下载发给客户-并且开始提交网站公安备案-作为APP下载落地页文娱产品一定要备案-包括安卓android下载(简单)-ios苹果plist下载(稍微麻烦一丢丢)-优雅草卓伊凡
【03】仿站技术之python技术,看完学会再也不用去购买收费工具了-修改整体页面做好安卓下载发给客户-并且开始提交网站公安备案-作为APP下载落地页文娱产品一定要备案-包括安卓android下载(简单)-ios苹果plist下载(稍微麻烦一丢丢)-优雅草卓伊凡
34 13
【03】仿站技术之python技术,看完学会再也不用去购买收费工具了-修改整体页面做好安卓下载发给客户-并且开始提交网站公安备案-作为APP下载落地页文娱产品一定要备案-包括安卓android下载(简单)-ios苹果plist下载(稍微麻烦一丢丢)-优雅草卓伊凡
|
4天前
|
JavaScript 搜索推荐 Android开发
【01】仿站技术之python技术,看完学会再也不用去购买收费工具了-用python扒一个app下载落地页-包括安卓android下载(简单)-ios苹果plist下载(稍微麻烦一丢丢)-客户的麻将软件需要下载落地页并且要做搜索引擎推广-本文用python语言快速开发爬取落地页下载-优雅草卓伊凡
【01】仿站技术之python技术,看完学会再也不用去购买收费工具了-用python扒一个app下载落地页-包括安卓android下载(简单)-ios苹果plist下载(稍微麻烦一丢丢)-客户的麻将软件需要下载落地页并且要做搜索引擎推广-本文用python语言快速开发爬取落地页下载-优雅草卓伊凡
23 8
【01】仿站技术之python技术,看完学会再也不用去购买收费工具了-用python扒一个app下载落地页-包括安卓android下载(简单)-ios苹果plist下载(稍微麻烦一丢丢)-客户的麻将软件需要下载落地页并且要做搜索引擎推广-本文用python语言快速开发爬取落地页下载-优雅草卓伊凡
|
4天前
|
数据采集 JavaScript Android开发
【02】仿站技术之python技术,看完学会再也不用去购买收费工具了-本次找了小影-感觉页面很好看-本次是爬取vue需要用到Puppeteer库用node.js扒一个app下载落地页-包括安卓android下载(简单)-ios苹果plist下载(稍微麻烦一丢丢)-优雅草卓伊凡
【02】仿站技术之python技术,看完学会再也不用去购买收费工具了-本次找了小影-感觉页面很好看-本次是爬取vue需要用到Puppeteer库用node.js扒一个app下载落地页-包括安卓android下载(简单)-ios苹果plist下载(稍微麻烦一丢丢)-优雅草卓伊凡
29 7
【02】仿站技术之python技术,看完学会再也不用去购买收费工具了-本次找了小影-感觉页面很好看-本次是爬取vue需要用到Puppeteer库用node.js扒一个app下载落地页-包括安卓android下载(简单)-ios苹果plist下载(稍微麻烦一丢丢)-优雅草卓伊凡
|
1天前
|
存储 索引 Python
Python入门:6.深入解析Python中的序列
在 Python 中,**序列**是一种有序的数据结构,广泛应用于数据存储、操作和处理。序列的一个显著特点是支持通过**索引**访问数据。常见的序列类型包括字符串(`str`)、列表(`list`)和元组(`tuple`)。这些序列各有特点,既可以存储简单的字符,也可以存储复杂的对象。 为了帮助初学者掌握 Python 中的序列操作,本文将围绕**字符串**、**列表**和**元组**这三种序列类型,详细介绍其定义、常用方法和具体示例。
Python入门:6.深入解析Python中的序列
|
1天前
|
存储 Linux iOS开发
Python入门:2.注释与变量的全面解析
在学习Python编程的过程中,注释和变量是必须掌握的两个基础概念。注释帮助我们理解代码的意图,而变量则是用于存储和操作数据的核心工具。熟练掌握这两者,不仅能提高代码的可读性和维护性,还能为后续学习复杂编程概念打下坚实的基础。
Python入门:2.注释与变量的全面解析
|
23天前
|
存储 缓存 Java
Python高性能编程:五种核心优化技术的原理与Python代码
Python在高性能应用场景中常因执行速度不及C、C++等编译型语言而受质疑,但通过合理利用标准库的优化特性,如`__slots__`机制、列表推导式、`@lru_cache`装饰器和生成器等,可以显著提升代码效率。本文详细介绍了这些实用的性能优化技术,帮助开发者在不牺牲代码质量的前提下提高程序性能。实验数据表明,这些优化方法能在内存使用和计算效率方面带来显著改进,适用于大规模数据处理、递归计算等场景。
58 5
Python高性能编程:五种核心优化技术的原理与Python代码
|
7天前
|
监控 算法 安全
内网桌面监控软件深度解析:基于 Python 实现的 K-Means 算法研究
内网桌面监控软件通过实时监测员工操作,保障企业信息安全并提升效率。本文深入探讨K-Means聚类算法在该软件中的应用,解析其原理与实现。K-Means通过迭代更新簇中心,将数据划分为K个簇类,适用于行为分析、异常检测、资源优化及安全威胁识别等场景。文中提供了Python代码示例,展示如何实现K-Means算法,并模拟内网监控数据进行聚类分析。
28 10
|
1月前
|
机器学习/深度学习 运维 数据可视化
Python时间序列分析:使用TSFresh进行自动化特征提取
TSFresh 是一个专门用于时间序列数据特征自动提取的框架,支持分类、回归和异常检测等机器学习任务。它通过自动化特征工程流程,处理数百个统计特征(如均值、方差、自相关性等),并通过假设检验筛选显著特征,提升分析效率。TSFresh 支持单变量和多变量时间序列数据,能够与 scikit-learn 等库无缝集成,适用于大规模时间序列数据的特征提取与模型训练。其工作流程包括数据格式转换、特征提取和选择,并提供可视化工具帮助理解特征分布及与目标变量的关系。
75 16
Python时间序列分析:使用TSFresh进行自动化特征提取
|
25天前
|
存储 算法 安全
控制局域网上网软件之 Python 字典树算法解析
控制局域网上网软件在现代网络管理中至关重要,用于控制设备的上网行为和访问权限。本文聚焦于字典树(Trie Tree)算法的应用,详细阐述其原理、优势及实现。通过字典树,软件能高效进行关键词匹配和过滤,提升系统性能。文中还提供了Python代码示例,展示了字典树在网址过滤和关键词屏蔽中的具体应用,为局域网的安全和管理提供有力支持。
50 17
|
28天前
|
运维 Shell 数据库
Python执行Shell命令并获取结果:深入解析与实战
通过以上内容,开发者可以在实际项目中灵活应用Python执行Shell命令,实现各种自动化任务,提高开发和运维效率。
56 20

相关产品

  • 云解析DNS
  • 推荐镜像

    更多