普罗米修斯 -- HTTP API 调用 PromQL

本文涉及的产品
可观测监控 Prometheus 版,每月50GB免费额度
简介: 普罗米修斯 -- HTTP API 调用 PromQL

简介

Prometheus API 使用了 JSON 格式的响应内容。 当 API 调用成功后将会返回查询结果。所有的 API 请求均使用以下的 JSON 格式:

{
  "status": "success" | "error",
  "data": <data>,

  // Only set if status is "error". The data field may still hold
  // additional data.
  "errorType": "<string>",
  "error": "<string>"
}

我们可以通过如下的 get 请求向普罗米修斯发送查询请求:

http://promurl:port/api/v1/query?query=kube_pod_container_info&time=1636457100
  • api 路径都是/api/v1/query
  • 有两种查询类型, 这里面我们用的查询类型就是 query 类型(还有另一个叫 query_range)
  • 在路径和查询类型后跟着的就是 PromQL 语句了。
  • 最后的 time 是时间戳, 代表着查询的时间基线。 就是我们的 PromQL 是以哪个时间点为基准查询的。 我们说过普罗米修斯本身就是一个时序数据库。它默认保存 14 天的数据, 超过 14 天就会自动删除。 所以这个时间戳可以让我们以过去某个时间点为基础进行查询。如果在 UI 上查询的话,只能以当前时间为基线进行查询。

下面贴一个例子看一下我们查询的 json 结果是什么样子的:

$ curl 'http://localhost:9090/api/v1/query?query=up&amp;time=2015-07-01T20:10:51.781Z'
{
   "status" : "success",
   "data" : {
      "resultType" : "vector",
      "result" : [
         {
            "metric" : {
               "__name__" : "up",
               "job" : "prometheus",
               "instance" : "localhost:9090"
            },
            "value": [ 1435781451.781, "1" ]
         },
         {
            "metric" : {
               "__name__" : "up",
               "job" : "node",
               "instance" : "localhost:9100"
            },
            "value" : [ 1435781451.781, "0" ]
         }
      ]
   }
}

响应数据类型

当 API 调用成功后,Prometheus 会返回 JSON 格式的响应内容,格式如上小节所示。并且在 data 节点中返回查询结果。data 节点格式如下:

{
  "resultType": "matrix" | "vector" | "scalar" | "string",
  "result": <value>
}

PromQL 表达式可能返回多种数据类型,在响应内容中使用 resultType 表示当前返回的数据类型,包括:

  • 瞬时向量:vector

当返回数据类型 resultType 为 vector 时,result 响应格式如下:

[
  {
    "metric": { "<label_name>": "<label_value>", ... },
    "value": [ <unix_time>, "<sample_value>" ]
  },
  ...
]

其中 metrics 表示当前时间序列的特征维度,value 只包含一个唯一的样本。

  • 区间向量:matrix

当返回数据类型 resultType 为 matrix 时,result 响应格式如下:

[
  {
    "metric": { "<label_name>": "<label_value>", ... },
    "values": [ [ <unix_time>, "<sample_value>" ], ... ]
  },
  ...
]

其中 metrics 表示当前时间序列的特征维度,values 包含当前事件序列的一组样本。

  • 标量:scalar

当返回数据类型 resultType 为 scalar 时,result 响应格式如下:

[ <unix_time>, "<scalar_value>" ]

由于标量不存在时间序列一说,因此 result 表示为当前系统时间一个标量的值。

  • 字符串:string

当返回数据类型 resultType 为 string 时,result 响应格式如下:

[ <unix_time>, "<string_value>" ]

字符串类型的响应内容格式和标量相同。

区间数据查询

使用 QUERY_RANGE API 我们则可以直接查询 PromQL 表达式在一段时间返回内的计算结果。

GET /api/v1/query_range

URL 请求参数:

  • query=: PromQL 表达式。
  • start=: 起始时间。
  • end=: 结束时间。
  • step=: 查询步长。
  • timeout=: 超时设置。可选参数,默认情况下使用-query,timeout 的全局设置。

当使用 QUERY_RANGE API 查询 PromQL 表达式时,返回结果一定是一个区间向量:

{
  "resultType": "matrix",
  "result": <value>
}
需要注意的是,在 QUERY_RANGE API 中 PromQL 只能使用瞬时向量选择器类型的表达式。

例如使用以下表达式查询表达式 up 在 30 秒范围内以 15 秒为间隔计算 PromQL 表达式的结果。

$ curl 'http://localhost:9090/api/v1/query_range?query=up&amp;start=2015-07-01T20:10:30.781Z&amp;end=2015-07-01T20:11:00.781Z&amp;step=15s'
{
   "status" : "success",
   "data" : {
      "resultType" : "matrix",
      "result" : [
         {
            "metric" : {
               "__name__" : "up",
               "job" : "prometheus",
               "instance" : "localhost:9090"
            },
            "values" : [
               [ 1435781430.781, "1" ],
               [ 1435781445.781, "1" ],
               [ 1435781460.781, "1" ]
            ]
         },
         {
            "metric" : {
               "__name__" : "up",
               "job" : "node",
               "instance" : "localhost:9091"
            },
            "values" : [
               [ 1435781430.781, "0" ],
               [ 1435781445.781, "0" ],
               [ 1435781460.781, "1" ]
            ]
         }
      ]
   }
}

实战演示

最近做了一个资源优化专项,目的是实际了解一下业务运行时产品 160+ 的服务每个服务所使用的 cpu 和内存情况。 并对比他们申请的 request 和 limit 的值,计算服务是否申请了过多的资源导致资源浪费。 所以我们要通过 HTTP PromQL 把相关的数据查询出来。

prom_url = 'http://1.117.219.41:30778'
start_time = str(int(datetime.strptime("09/11/2021 19:25:00", "%d/%m/%Y %H:%M:%S").timestamp()))
end_time = str(int(datetime.strptime("09/11/2021 21:25:00", "%d/%m/%Y %H:%M:%S").timestamp()))
result = {}

r = requests.get(
    url='{prom_url}/api/v1/query_range?query=sum(node_namespace_pod_container%3Acontainer_cpu_usage_seconds_total%3Asum_rate%7Bcluster%3D%22cls-hchrqyex%22%7D)%20by%20(pod)&amp;start={start}&amp;end={end}&amp;step=30'.format(
        start=start_time, end=end_time, prom_url=prom_url))
datas = r.json()['data']['result']

for data in datas:
    pod_name = data['metric']['pod']
    cpu_usages = []
    for c in data['values']:
        cpu_usages.append(float(c[1]))
    max_value = max(cpu_usages)
    avg_value = statistics.mean(cpu_usages)
    result[pod_name] = {
        'cpu_max_usage': max_value,
        'cpu_avg_usage': avg_value
    }

上面代码中的 PromQL 是sum(node_namespace_pod_container:container_cpu_usage_seconds_total:sum_rate) by (pod) 首先 node_namespace_pod_container:container_cpu_usage_seconds_total:sum_rate 是一个预定义的查询别名。 有些查询语句过于复杂,所以我们可以给复杂的语句一个别名, 这样在使用 的时候就比较方便了。 而我们使用的这个别名就如同它的名字一样, 是查询每个容器的 cpu 使用率的。 因为一个 pod 里可能会有多个容器, 所以需要使用 sum by (pod) 的方式统计出每个 pod 的 cpu 使用率总和。 这里我们使用的就是一个 query_range 的查询类型。 因为我们希望查询在测试期间的 2 个小时内 cpu 使用率的最大值和平均值。 所以我们在请求最后使用step=30这个参数来指定每隔 30s 计算一次指标,然后我们在使用 start 和 end 参数指定了一个时间范围。所以在指定的这 2 个小时内,每隔 30s 就会使用 PromQL 查询一次,这样返回结果里我们就有了很多个采样数据, 反应了随着时间变化 CPU 使用率的情况。 这时候我们再编写 python 代码把返回的 json 取出来计算最大值和平均值即可。

相关实践学习
容器服务Serverless版ACK Serverless 快速入门:在线魔方应用部署和监控
通过本实验,您将了解到容器服务Serverless版ACK Serverless 的基本产品能力,即可以实现快速部署一个在线魔方应用,并借助阿里云容器服务成熟的产品生态,实现在线应用的企业级监控,提升应用稳定性。
相关文章
|
6月前
|
网络协议 JavaScript 安全
第十一篇 前沿趋势与展望:深入探索GraphQL、RESTful API、WebSocket、SSE及QUIC与HTTP/3
第十一篇 前沿趋势与展望:深入探索GraphQL、RESTful API、WebSocket、SSE及QUIC与HTTP/3
109 1
|
1月前
|
API
使用`System.Net.WebClient`类发送HTTP请求来调用阿里云短信API
使用`System.Net.WebClient`类发送HTTP请求来调用阿里云短信API
27 0
|
3月前
|
Oracle Java 关系型数据库
JDK版本特性问题之在 JDK 11 中,HTTP Client API 的特点有哪些
JDK版本特性问题之在 JDK 11 中,HTTP Client API 的特点有哪些
|
4月前
|
消息中间件 API 数据库
在微服务架构中,每个服务通常都是一个独立运行、独立部署、独立扩展的组件,它们之间通过轻量级的通信机制(如HTTP/RESTful API、gRPC等)进行通信。
在微服务架构中,每个服务通常都是一个独立运行、独立部署、独立扩展的组件,它们之间通过轻量级的通信机制(如HTTP/RESTful API、gRPC等)进行通信。
|
4月前
|
缓存 JSON 算法
http【详解】状态码,方法,接口设计 —— RestfuI API,头部 —— headers,缓存
http【详解】状态码,方法,接口设计 —— RestfuI API,头部 —— headers,缓存
70 0
|
6月前
|
JSON 测试技术 API
Python的Api自动化测试使用HTTP客户端库发送请求
【4月更文挑战第18天】在Python中进行HTTP请求和API自动化测试有多个库可选:1) `requests`是最流行的选择,支持多种请求方法和内置JSON解析;2) `http.client`是标准库的一部分,适合需要低级别控制的用户;3) `urllib`提供URL操作,适用于复杂请求;4) `httpx`拥有类似`requests`的API,提供现代特性和异步支持。根据具体需求选择,如多数情况`requests`已足够。
77 3
|
6月前
|
XML 自然语言处理 前端开发
NLP自学习平台提供了API接口调用服务,这些接口可以通过HTTP GET请求进行调用
【2月更文挑战第7天】NLP自学习平台提供了API接口调用服务,这些接口可以通过HTTP GET请求进行调用
73 2
|
6月前
|
Shell API
srs的http api鉴权
srs的http api鉴权
139 0
|
6月前
|
分布式计算 Hadoop Java
[hadoop3.x系列]HDFS REST HTTP API的使用(二)HttpFS
[hadoop3.x系列]HDFS REST HTTP API的使用(二)HttpFS
119 1
|
6月前
|
JSON Java API
Java 编程问题:十三、HTTP 客户端和 WebSocket API
Java 编程问题:十三、HTTP 客户端和 WebSocket API
272 0