一、为什么使用线程池
java中经常需要用到多线程来处理一些业务,如果单纯使用继承Thread或者实现Runnable接口的方式来创建线程,那样势必有创建及销毁线程耗费资源、线程上下文切换问题。同时创建过多的线程也可能引发资源耗尽的风险,这个时候引入线程池比较合理,方便线程任务的管理。
java中涉及到线程池的相关类均在jdk1.5开始的 java.util.concurrent(JUC)包中,涉及到的几个核心类及接口包括:Executor、Executors、ExecutorService、ThreadPoolExecutor、FutureTask、Callable、Runnable等。
二、线程池的优势
总体来说,线程池有如下的优势:
(1)降低资源消耗。通过重复利用已创建的线程降低线程创建和销毁造成的消耗。
(2)提高响应速度。当任务到达时,任务可以不需要等到线程创建就能立即执行。
(3)提高线程的可管理性。线程是稀缺资源,如果无限制的创建,不仅会消耗系统资源,还会降低系统的稳定性,使用线程池可以进行统一的分配,调优和监控。
三、线程池的简单使用
1、Executors.newCachedThreadPool()
cached的池子非常大,可以有很多的线程并发运行。
package threadPool; import java.util.concurrent.ExecutorService; import java.util.concurrent.Executors; public class ThreadPoolDemo01 { public static void main(String[] args) { ExecutorService e1 = Executors.newCachedThreadPool(); // ExecutorService e2 = Executors.newFixedThreadPool(10); // ExecutorService e3 = Executors.newSingleThreadExecutor(); //使用线程 e1.execute(new Task(1)); } } class Task implements Runnable{ int i; public Task(int i) { this.i = i; } @Override public void run() { //打印当前线程的名字 System.out.println(Thread.currentThread().getName() + "-----" + i); } }
已经打出了当前线程的名字。
我们将调用线程的方法执行100次,由于run方法执行有时长,线程来不及回池子时就需要再执行,所以需要开启另一个线程。执行100次大概需要开启三十多个线程。
public class ThreadPoolDemo01 { public static void main(String[] args) { ExecutorService e1 = Executors.newCachedThreadPool(); // ExecutorService e2 = Executors.newFixedThreadPool(10); // ExecutorService e3 = Executors.newSingleThreadExecutor(); //使用线程 for(int i=0; i<100; i++) { e1.execute(new Task(i)); } } } class Task implements Runnable{ int i; public Task(int i) { this.i = i; } @Override public void run() { //打印当前线程的名字 System.out.println(Thread.currentThread().getName() + "-----" + i); } }
线程池的序号大概是到三十几,说明从线程池中拿了三十多个线程。
我们在run方法中加一个一秒的睡眠,再看看结果。
class Task implements Runnable{ int i; public Task(int i) { this.i = i; } @Override public void run() { //打印当前线程的名字 System.out.println(Thread.currentThread().getName() + "-----" + i); //睡1s try { Thread.sleep(1000); } catch (InterruptedException e) { e.printStackTrace(); } } }
可以看到大概使用了100个线程。说明每一次调用都需要用一个新的线程。
2、Executors.newFixedThreadPool()
fixed线程池需要指定生成的线程数量。我们在代码中指定生成10个线程。
线程池中只会生成10个线程,如果run方法中睡1秒钟,那么在1s之内只能打印出10个线程名字,我们的代码执行完需要10s。
public class ThreadPoolDemo01 { public static void main(String[] args) { // ExecutorService e1 = Executors.newCachedThreadPool(); ExecutorService e2 = Executors.newFixedThreadPool(10); // ExecutorService e3 = Executors.newSingleThreadExecutor(); //使用线程 for(int i=0; i<100; i++) { e2.execute(new Task(i)); } } } class Task implements Runnable{ int i; public Task(int i) { this.i = i; } @Override public void run() { //打印当前线程的名字 System.out.println(Thread.currentThread().getName() + "-----" + i); //睡1s try { Thread.sleep(1000); } catch (InterruptedException e) { e.printStackTrace(); } } }
线程池中只会生成10个线程,如果run方法中睡1秒钟,那么在1s之内只能打印出10个线程名字,我们的代码执行完需要10s。
3、Executors.newSingleThreadExecutor()
这个线程池中只有一个线程,可以理解为fixed的单数版。
public class ThreadPoolDemo01 { public static void main(String[] args) { // ExecutorService e1 = Executors.newCachedThreadPool(); // ExecutorService e2 = Executors.newFixedThreadPool(10); ExecutorService e3 = Executors.newSingleThreadExecutor(); //使用线程 for(int i=0; i<100; i++) { e3.execute(new Task(i)); } } } class Task implements Runnable{ int i; public Task(int i) { this.i = i; } @Override public void run() { //打印当前线程的名字 System.out.println(Thread.currentThread().getName() + "-----" + i); //睡1s try { Thread.sleep(1000); } catch (InterruptedException e) { e.printStackTrace(); } } }
每次打印出的线程名字都相同,说明自始至终都使用的用一个线程。1s钟只打印1个名字,代码执行完需要100s(需要等1s后线程回到线程池,才能再使用这个线程)。
四、线程池源码分析
public static ExecutorService newCachedThreadPool() { return new ThreadPoolExecutor(0, Integer.MAX_VALUE, 60L, TimeUnit.SECONDS, new SynchronousQueue<Runnable>()); } public static ExecutorService newFixedThreadPool(int nThreads) { return new ThreadPoolExecutor(nThreads, nThreads, 0L, TimeUnit.MILLISECONDS, new LinkedBlockingQueue<Runnable>()); } public static ExecutorService newSingleThreadExecutor() { return new FinalizableDelegatedExecutorService (new ThreadPoolExecutor(1, 1, 0L, TimeUnit.MILLISECONDS, new LinkedBlockingQueue<Runnable>())); } 可以看到他们都是由ThreadPoolExecutor构造出的方法,那我们再看看ThreadPoolExecutor: /** * Creates a new {@code ThreadPoolExecutor} with the given initial * parameters. * * @param corePoolSize the number of threads to keep in the pool, even * if they are idle, unless {@code allowCoreThreadTimeOut} is set * @param maximumPoolSize the maximum number of threads to allow in the * pool * @param keepAliveTime when the number of threads is greater than * the core, this is the maximum time that excess idle threads * will wait for new tasks before terminating. * @param unit the time unit for the {@code keepAliveTime} argument * @param workQueue the queue to use for holding tasks before they are * executed. This queue will hold only the {@code Runnable} * tasks submitted by the {@code execute} method. * @param threadFactory the factory to use when the executor * creates a new thread * @param handler the handler to use when execution is blocked * because the thread bounds and queue capacities are reached * @throws IllegalArgumentException if one of the following holds:<br> * {@code corePoolSize < 0}<br> * {@code keepAliveTime < 0}<br> * {@code maximumPoolSize <= 0}<br> * {@code maximumPoolSize < corePoolSize} * @throws NullPointerException if {@code workQueue} * or {@code threadFactory} or {@code handler} is null */ public ThreadPoolExecutor(int corePoolSize, int maximumPoolSize, long keepAliveTime, TimeUnit unit, BlockingQueue<Runnable> workQueue, ThreadFactory threadFactory, RejectedExecutionHandler handler) { if (corePoolSize < 0 || maximumPoolSize <= 0 || maximumPoolSize < corePoolSize || keepAliveTime < 0) throw new IllegalArgumentException(); if (workQueue == null || threadFactory == null || handler == null) throw new NullPointerException(); this.acc = System.getSecurityManager() == null ? null : AccessController.getContext(); this.corePoolSize = corePoolSize; this.maximumPoolSize = maximumPoolSize; this.workQueue = workQueue; this.keepAliveTime = unit.toNanos(keepAliveTime); this.threadFactory = threadFactory; this.handler = handler; }
1、线程池参数
int corePoolSize 核心线程数,也是线程池中常驻的线程数,线程池初始化时默认是没有线程的,当任务来临时才开始创建线程去执行任务
int maximumPoolSize 最大线程数,在核心线程数的基础上可能会额外增加一些非核心线程,需要注意的是只有当workQueue队列填满时才会创建多于corePoolSize的线程(线程池总线程数不超过maxPoolSize)
long keepAliveTime 线程的最大存活时间,空闲时间超过keepAliveTime就会被自动终止回收掉,一直回收到剩corePoolSize个
TimeUnit unit 存活时间的单位
BlockingQueue<Runnable> workQueue 阻塞队列
ThreadFactory threadFactory 线程工厂
RejectedExecutionHandler handler 拒绝执行时的处理函数
按照下面的代码来执行一下
public class ThreadPoolDemo01 { public static void main(String[] args) { // ExecutorService e1 = Executors.newCachedThreadPool(); // ExecutorService e2 = Executors.newFixedThreadPool(10); // ExecutorService e3 = Executors.newSingleThreadExecutor(); ThreadPoolExecutor t = new ThreadPoolExecutor( 10, //corePoolSize 20, //maximumPoolSize 10, //keepAliveTime TimeUnit.SECONDS, //TimeUnit new ArrayBlockingQueue<>(10) //BlockingQueue ); //使用线程 for(int i=0; i<100; i++) { t.execute(new Task(i)); } } } class Task implements Runnable{ int i; public Task(int i) { this.i = i; } @Override public void run() { //打印当前线程的名字 System.out.println(Thread.currentThread().getName() + "-----" + i); //睡1s try { Thread.sleep(1000); } catch (InterruptedException e) { e.printStackTrace(); } } }
在代码中,我们将核心线程数设置为10,最大线程数设置为20,最大存活时间设置为10,单位为秒,阻塞队列的大小设置为10
看一下执行结果:
pool-1-thread-3-----2 pool-1-thread-7-----6 pool-1-thread-1-----0 pool-1-thread-2-----1 pool-1-thread-4-----3 pool-1-thread-5-----4 pool-1-thread-6-----5 pool-1-thread-10-----9 pool-1-thread-9-----8 pool-1-thread-8-----7 pool-1-thread-11-----20 pool-1-thread-12-----21 pool-1-thread-13-----22 pool-1-thread-14-----23 pool-1-thread-15-----24 pool-1-thread-16-----25 pool-1-thread-17-----26 pool-1-thread-18-----27 pool-1-thread-19-----28 pool-1-thread-20-----29 Exception in thread "main" java.util.concurrent.RejectedExecutionException: Task threadPool.Task@135fbaa4 rejected from java.util.concurrent.ThreadPoolExecutor@45ee12a7[Running, pool size = 20, active threads = 20, queued tasks = 10, completed tasks = 0] at java.util.concurrent.ThreadPoolExecutor$AbortPolicy.rejectedExecution(Unknown Source) at java.util.concurrent.ThreadPoolExecutor.reject(Unknown Source) at java.util.concurrent.ThreadPoolExecutor.execute(Unknown Source) at threadPool.ThreadPoolDemo01.main(ThreadPoolDemo01.java:27) pool-1-thread-16-----11 pool-1-thread-15-----12 pool-1-thread-13-----15 pool-1-thread-19-----10 pool-1-thread-14-----13 pool-1-thread-8-----18 pool-1-thread-11-----17 pool-1-thread-12-----16 pool-1-thread-18-----14 pool-1-thread-9-----19
2、执行流程分析
由于我们的核心线程数(corePoolSize)设置为10,就会有10个常驻的核心线程去执行
pool-1-thread-3-----2 pool-1-thread-7-----6 pool-1-thread-1-----0 pool-1-thread-2-----1 pool-1-thread-4-----3 pool-1-thread-5-----4 pool-1-thread-6-----5 pool-1-thread-10-----9
由于run方法中睡眠了一秒钟,后面进入的任务会进入阻塞队列(blockingQueue)中,当阻塞队列中的十个空间被填满后,创建普通的线程去执行。
pool-1-thread-11-----20 pool-1-thread-12-----21 pool-1-thread-13-----22 pool-1-thread-14-----23 pool-1-thread-15-----24 pool-1-thread-16-----25 pool-1-thread-17-----26 pool-1-thread-18-----27 pool-1-thread-19-----28 pool-1-thread-20-----29
由于blockingQueue的大小为10,10个任务进去之后,再进任务就会报拒绝执行(RejectedExecutionException)的错了:
Exception in thread "main" java.util.concurrent.RejectedExecutionException: Task threadPool.Task@135fbaa4 rejected from java.util.concurrent.ThreadPoolExecutor@45ee12a7[Running, pool size = 20, active threads = 20, queued tasks = 10, completed tasks = 0] at java.util.concurrent.ThreadPoolExecutor$AbortPolicy.rejectedExecution(Unknown Source) at java.util.concurrent.ThreadPoolExecutor.reject(Unknown Source) at java.util.concurrent.ThreadPoolExecutor.execute(Unknown Source) at threadPool.ThreadPoolDemo01.main(ThreadPoolDemo01.java:27)
1秒之后,线程执行结束之后回到线程池,就可以继续去队列中接受任务。将队列中的十个任务接收完。
核心线程和普通线程是不作区分的,他们没有任何的区别,所以接收任务的时候也是谁先结束谁就去接收。
pool-1-thread-16-----11 pool-1-thread-15-----12 pool-1-thread-13-----15 pool-1-thread-19-----10 pool-1-thread-14-----13 pool-1-thread-8-----18 pool-1-thread-11-----17 pool-1-thread-12-----16 pool-1-thread-18-----14 pool-1-thread-9-----19
3、cachedThreadPool()源码分析
public static ExecutorService newCachedThreadPool(ThreadFactory threadFactory) { return new ThreadPoolExecutor(0, Integer.MAX_VALUE, 60L, TimeUnit.SECONDS, new SynchronousQueue<Runnable>(), threadFactory); }
可以看到在cached中,核心线程数为0,线程总数为无穷大,阻塞队列为0,线程存活时间为60s。
这说明cached中没有核心线程,任务也不能进入阻塞队列,那么在一开始就会申请普通线程去执行。而线程存活时间为60s,被复用的次数会非常多,除非线程结束任务后的60s内没有新任务,线程才会被销毁,由于核心线程数为0,所有的线程均会被回收;同时线程数总数位无穷大,可以同时有非常多的线程。
4、newFixedThreadPool()源码分析
public static ExecutorService newFixedThreadPool(int nThreads) { return new ThreadPoolExecutor(nThreads, nThreads, 0L, TimeUnit.MILLISECONDS, new LinkedBlockingQueue<Runnable>()); }
核心线程数和最大线程数一样,都是传入的数值,销毁时间为0。
说明传入的线程都作为核心线程使用,并且使用之后立即销毁。