数据结构刷题:第十六天(基础)

简介: 数据结构刷题:第十六天(基础)

一,颜色分类


75. 颜色分类 - 力扣(LeetCode)

https://leetcode.cn/problems/sort-colors/?plan=data-structures&plan_progress=zz5yyb3

a030aedf98834239b44548625602fef6.png


1,单指针


我们可以考虑对数组进行两次遍历。在第一次遍历中,我们将数组中所有的 0 交换到数组的头部。在第二次遍历中,我们将数组中所有的 1 交换到头部的 0 之后。此时,所有的 2 都出现在数组的尾部,这样我们就完成了排序。


具体地,我们使用一个指针 ptr 表示「头部」的范围,ptr 中存储了一个整数,表示数组 nums 从位置 0 到位置 ptr−1 都属于「头部」。ptr 的初始值为 0,表示还没有数处于「头部」。


在第一次遍历中,我们从左向右遍历整个数组,如果找到了 0,那么就需要将 0 与「头部」位置的元素进行交换,并将「头部」向后扩充一个位置。在遍历结束之后,所有的 0 都被交换到「头部」的范围,并且「头部」只包含 0。


在第二次遍历中,我们从「头部」开始,从左向右遍历整个数组,如果找到了 1,那么就需要将 1 与「头部」位置的元素进行交换,并将「头部」向后扩充一个位置。在遍历结束之后,所有的 1 都被交换到「头部」的范围,并且都在 0 之后,此时 2 只出现在「头部」之外的位置,因此排序完成。


class Solution {
public:
    void sortColors(vector<int>& nums) {
        int n = nums.size();
        int ptr = 0;
        for (int i = 0; i < n; ++i) {
            if (nums[i] == 0) {
                swap(nums[i], nums[ptr]);
                ++ptr;
            }
        }
        for (int i = ptr; i < n; ++i) {
            if (nums[i] == 1) {
                swap(nums[i], nums[ptr]);
                ++ptr;
            }
        }
    }
};


复杂度分析


  • 时间复杂度:O(n),其中 nn 是数组 \textit{nums}nums 的长度。


  • 空间复杂度:O(1)。


2,双指针


方法一需要进行两次遍历,那么我们是否可以仅使用一次遍历呢?我们可以额外使用一个指针,即使用两个指针分别用来交换 0 和 1。


具体地,我们用指针 p_0来交换 0,p_1来交换 1,初始值都为 0。当我们从左向右遍历整个数组时:


如果找到了 1,那么将其与 nums[p 1 ] 进行交换,并将 p_1向后移动一个位置,这与方法一是相同的;


如果找到了 0,那么将其与 [p_0]nums[p] 进行交换,并将 p_0向后移动一个位置。这样做是正确的吗?我们可以注意到,因为连续的 0 之后是连续的 1,因此如果我们将 0 与 nums[p 0] 进行交换,那么我们可能会把一个 1 交换出去。当 p_0 < p_1时,我们已经将一些 1 连续地放在头部,此时一定会把一个 1 交换出去,导致答案错误。因此,如果 p_0 < p_1,那么我们需要再将nums[i] 与 nums[p 1] 进行交换,其中 i 是当前遍历到的位置,在进行了第一次交换后,nums[i] 的值为 1,我们需要将这个 1 放到「头部」的末端。在最后,无论是否有 p_0 < p_1,我们需要将 p_0和 p_1均向后移动一个位置,而不是仅将 p_0向后移动一个位置。


class Solution {
public:
    void sortColors(vector<int>& nums) {
        int n = nums.size();
        int p0 = 0, p1 = 0;
        for (int i = 0; i < n; ++i) {
            if (nums[i] == 1) {
                swap(nums[i], nums[p1]);
                ++p1;
            } else if (nums[i] == 0) {
                swap(nums[i], nums[p0]);
                if (p0 < p1) {
                    swap(nums[i], nums[p1]);
                }
                ++p0;
                ++p1;
            }
        }
    }
};


复杂度分析


  • 时间复杂度:O(n),其中 nn 是数组 \textit{nums}nums 的长度。


  • 空间复杂度:O(1)。


二,合并区间


56. 合并区间 - 力扣(LeetCode)

https://leetcode.cn/problems/merge-intervals/?plan=data-structures&plan_progress=zz5yyb3

a6e100be52a747fc9d48b26f2fcc88b6.png


1,排序


思路


如果我们按照区间的左端点排序,那么在排完序的列表中,可以合并的区间一定是连续的。如下图所示,标记为蓝色、黄色和绿色的区间分别可以合并成一个大区间,它们在排完序的列表中是连续的:


#define MAX_LEN 100000            // the amount of buckets
class MyHashMap {
private:
    vector<pair<int, int>> map[MAX_LEN];     
    /** 定义散列函数返回存储数据的下标 */
    int getIndex(int key) {
        return key % MAX_LEN;
    }
    /* 查找数据在哈希表中的位置 */
    int getPos(int key, int index) {
        for (int i = 0; i < map[index].size(); ++i) {
            if (map[index][i].first == key) {
                return i;
            }
        }
        return -1;
    }
public:
    MyHashMap() {   
    }
    /* 插入一个键值对key, value。如果key存在于映射中,则更新其对应的值value */
    void put(int key, int value) {
        int index = getIndex(key);
        int pos = getPos(key, index);
        if (pos < 0) {
            map[index].push_back(make_pair(key, value));
        } else {
            map[index][pos].second = value;
        }
    }
    /* 返回特定的key所映射的value;如果映射中不包含key的映射,返回 -1  */
    int get(int key) {
        int index = getIndex(key);
        int pos = getPos(key, index);
        if (pos < 0) {
            return -1;
        } else {
            return map[index][pos].second;
        }
    }
    /** 如果映射中存在key的映射,则移除key和它所对应的value  */
    void remove(int key) {
        int index = getIndex(key);
        int pos = getPos(key, index);
        if (pos >= 0) {
            map[index].erase(map[index].begin() + pos);
        }
    }
};


看题解:


706. 设计哈希映射(详细C++代码基本问题详细) - 设计哈希映射 - 力扣(LeetCode)

https://leetcode.cn/problems/design-hashmap/solution/by-nehzil-bhd2/

目录
相关文章
|
编译器 C语言
【数据结构刷题】消失的数字和轮转数组(下)
【数据结构刷题】消失的数字和轮转数组(下)
【数据结构刷题】消失的数字和轮转数组(上)
【数据结构刷题】消失的数字和轮转数组(上)
|
算法
数据结构刷题训练:用栈实现队列(力扣OJ)
数据结构刷题训练:用栈实现队列(力扣OJ)
62 0
|
5月前
|
存储 算法 C语言
【数据结构与算法 刷题系列】合并两个有序链表
【数据结构与算法 刷题系列】合并两个有序链表
|
5月前
|
算法 C++
【数据结构与算法】:关于时间复杂度与空间复杂度的计算(C/C++篇)——含Leetcode刷题-2
【数据结构与算法】:关于时间复杂度与空间复杂度的计算(C/C++篇)——含Leetcode刷题
|
5月前
|
算法 C++
【数据结构与算法】:关于时间复杂度与空间复杂度的计算(C/C++篇)——含Leetcode刷题-1
【数据结构与算法】:关于时间复杂度与空间复杂度的计算(C/C++篇)——含Leetcode刷题
|
5月前
|
算法
【数据结构与算法 刷题系列】求带环链表的入环节点(图文详解)
【数据结构与算法 刷题系列】求带环链表的入环节点(图文详解)
|
5月前
|
算法
【数据结构与算法 刷题系列】判断链表是否有环(图文详解)
【数据结构与算法 刷题系列】判断链表是否有环(图文详解)
|
5月前
|
算法
【数据结构与算法 刷题系列】移除链表元素
【数据结构与算法 刷题系列】移除链表元素
下一篇
无影云桌面