牛客网Python篇数据分析习题(五)

简介: 现有牛客网12月每天练习题目的数据集nowcoder.csv。包含如下字段字段之间用逗号分隔。

1.现有牛客网12月每天练习题目的数据集nowcoder.csv。包含如下字段(字段之间用逗号分隔):

user_id:用户id

question_id:问题编号

result:运行结果

date:练习日期

请你统计答对和答错的总数分别是多少。

f6def83bff11fd8efdcd1a7b82a4e1e1_ce7381e0798f40ea82b4a8d56bbc0977.png

import pandas as pd
data = pd.read_csv("nowcoder.csv", sep=",")
print(data.groupby("result")["result"].count())

2.现有牛客网12月每天练习题目的数据集nowcoder.csv。包含如下字段(字段之间用逗号分隔):

user_id:用户id

question_id:问题编号

result:运行结果

date:练习日期

请你统计2021年12月连续练习题目3天及以上的所有用户。

16d6f2ad15f2f43cdb091568017612ee_f31a0bf747a84aeab3a65ab42c38ac2c.png

import pandas as pd
nd = pd.read_csv("nowcoder.csv")
nd["date"] = pd.to_datetime(nd["date"])
nd["date_1"] = nd["date"].dt.strftime("%Y-%m")
data = nd[nd["date_1"] == "2021-12"]
data["date_2"] = pd.to_datetime(data["date"].dt.date)
data["rk"] = pd.to_timedelta(data.groupby(["user_id"])["date_2"].rank(), unit="d")
data["cha"] = data["date_2"] - data["rk"]
result = data.groupby(["user_id", "cha"]).count().groupby("user_id")["rk"].max()
print(result[result >= 3])

3.现有一个Nowcoder.csv文件,它记录了牛客网的部分用户数据,包含如下字段(字段与字段之间以逗号间隔):

Nowcoder_ID:用户ID

Name:用户名

Level:等级

Achievement_value:成就值

Num_of_exercise:刷题量

Graduate_year:毕业年份

Language:常用语言

Continuous_check_in_days:最近连续签到天数

Number_of_submissions:提交代码次数

Last_submission_time:最后一次提交题目日期

牛牛想要知道牛客网这些刷题用户,每年毕业生中最高的成就值分别是多少?

c8e061e4d4a1e4278fbaf0e0eec878b6_67d486e0aff445a795af63f84e888853.png

import pandas as pd
import datetime as dt
nd = pd.read_csv("Nowcoder.csv")
print(nd.groupby("Graduate_year")["Achievement_value"].max())

4.现有一个Nowcoder.csv文件,它记录了牛客网的部分用户数据,包含如下字段(字段与字段之间以逗号间隔):

Nowcoder_ID:用户ID

Name:用户名

Level:等级

Achievement_value:成就值

Num_of_exercise:刷题量

Graduate_year:毕业年份

Language:常用语言

Continuous_check_in_days:最近连续签到天数

Number_of_submissions:提交代码次数

Last_submission_time:最后一次提交题目日期

正在牛客网学习编程的小白同学,想要知道牛客网的用户们都使用了哪些语言,尤其是不同等级的用户中各类语言的使用分别有多少人,你能帮助他输出一下吗?

fc3814582f6fa085d4f4faad4becfb8f_e3156610ac6c42fd9febda28dafc5ec7.png

import pandas as pd
import datetime as dt
nd = pd.read_csv("Nowcoder.csv")
print(nd.groupby(["Level", "Language"])["Nowcoder_ID"].count())

5.现有一个Nowcoder.csv文件,它记录了牛客网的部分用户数据,包含如下字段(字段与字段之间以逗号间隔):

Nowcoder_ID:用户ID

Name:用户名

Level:等级

Achievement_value:成就值

Num_of_exercise:刷题量

Graduate_year:毕业年份

Language:常用语言

Continuous_check_in_days:最近连续签到天数

Number_of_submissions:提交代码次数

Last_submission_time:最后一次提交题目日期

产品经理小X同学想要分析一下用户的等级数据,他想知道在人数大于5的条件下,各个等级都分别有多少人?

e7cfe5e26c8d11c0769cf3084eeb3867_90849d9257404b99bd9a346a1d58364a.png

import pandas as pd
import datetime as dt
nd = pd.read_csv("Nowcoder.csv")
nd_time = nd.groupby("Level")["Level"].count()
print(nd_time)

6.某公司计划举办一场运动会,现有运动会项目数据集items.csv。 包含以下字段:

item_id:项目编号;

item_name:项目名称;

location:比赛场地。

有员工报名情况数据集signup.csv。包含以下字段:

employee_id:员工编号;

name:员工姓名;

sex:性别;

department:所属部门;

item_id:报名项目id

请你统计各类型项目的报名人数。

51a060eb8972407ffc26d0bd697d8629_a6265796995e4f9fb5d208a1f7ce5b72.png

import pandas as pd
df = pd.read_csv("items.csv")
df1 = pd.read_csv("signup.csv")
data = pd.merge(df, df1, on="item_id")
print(data.groupby(["item_name"])["item_name"].count())

7.某公司计划举办一场运动会,现有运动会项目数据集items.csv。 包含以下字段:

item_id:项目编号;

item_name:项目名称;

location:比赛场地。

有员工报名情况数据集signup.csv。包含以下字段:

employee_id:员工编号;

name:员工姓名;

sex:性别;

department:所属部门;

item_id:报名项目id

请你统计各类型项目的报名人数。

ee7e24fee6069279e5e97a20d96f187f_002208f0f7354b38a9b1db18545a9fbd.png

import pandas as pd
signup = pd.read_csv("signup.csv")
items = pd.read_csv("items.csv")
df = pd.merge(signup, items, on="item_id")
print(df.groupby("item_name")["item_id"].count())

8.某公司计划举办一场运动会,现有部分运动会项目数据集items.csv。 包含以下字段:

item_id:项目编号;

item_name:项目名称;

location:比赛场地。

有员工报名情况数据集signup.csv。包含以下字段:

employee_id:员工编号;

name:员工姓名;

sex:性别;

department:所属部门;

item_id:报名项目id。

另有signup1.csv,是education部门的报名情况,包含字段同signup.csv。

请你将signup.csv与signup1.csv的数据集合并后,统计各类型项目的报名人数。

6dff044537ac9e8aa4f690478cba13dd_ccbf6cc3748a40f3a59dc167acf083d0.png

import pandas as pd
items = pd.read_csv("items.csv")
signup = pd.read_csv("signup.csv")
signup1 = pd.read_csv("signup1.csv")
signup_all = pd.concat([signup, signup1])
df = pd.merge(items, signup_all, on="item_id")
print(df.groupby("item_name").size())
相关文章
|
17天前
|
数据采集 存储 数据挖掘
Python数据分析:Pandas库的高效数据处理技巧
【10月更文挑战第27天】在数据分析领域,Python的Pandas库因其强大的数据处理能力而备受青睐。本文介绍了Pandas在数据导入、清洗、转换、聚合、时间序列分析和数据合并等方面的高效技巧,帮助数据分析师快速处理复杂数据集,提高工作效率。
45 0
|
11天前
|
机器学习/深度学习 数据采集 数据挖掘
解锁 Python 数据分析新境界:Pandas 与 NumPy 高级技巧深度剖析
Pandas 和 NumPy 是 Python 中不可或缺的数据处理和分析工具。本文通过实际案例深入剖析了 Pandas 的数据清洗、NumPy 的数组运算、结合两者进行数据分析和特征工程,以及 Pandas 的时间序列处理功能。这些高级技巧能够帮助我们更高效、准确地处理和分析数据,为决策提供支持。
27 2
|
18天前
|
存储 数据挖掘 数据处理
Python数据分析:Pandas库的高效数据处理技巧
【10月更文挑战第26天】Python 是数据分析领域的热门语言,Pandas 库以其高效的数据处理功能成为数据科学家的利器。本文介绍 Pandas 在数据读取、筛选、分组、转换和合并等方面的高效技巧,并通过示例代码展示其实际应用。
30 2
|
23天前
|
数据采集 数据可视化 数据挖掘
R语言与Python:比较两种数据分析工具
R语言和Python是目前最流行的两种数据分析工具。本文将对这两种工具进行比较,包括它们的历史、特点、应用场景、社区支持、学习资源、性能等方面,以帮助读者更好地了解和选择适合自己的数据分析工具。
24 2
|
9天前
|
并行计算 数据挖掘 大数据
Python数据分析实战:利用Pandas处理大数据集
Python数据分析实战:利用Pandas处理大数据集
|
9天前
|
数据采集 数据可视化 数据挖掘
利用Python进行数据分析:Pandas库实战指南
利用Python进行数据分析:Pandas库实战指南
|
10天前
|
SQL 数据挖掘 Python
数据分析编程:SQL,Python or SPL?
数据分析编程用什么,SQL、python or SPL?话不多说,直接上代码,对比明显,明眼人一看就明了:本案例涵盖五个数据分析任务:1) 计算用户会话次数;2) 球员连续得分分析;3) 连续三天活跃用户数统计;4) 新用户次日留存率计算;5) 股价涨跌幅分析。每个任务基于相应数据表进行处理和计算。
|
11天前
|
数据采集 数据可视化 数据挖掘
使用Python进行数据分析和可视化
【10月更文挑战第33天】本文将介绍如何使用Python编程语言进行数据分析和可视化。我们将从数据清洗开始,然后进行数据探索性分析,最后使用matplotlib和seaborn库进行数据可视化。通过阅读本文,你将学会如何运用Python进行数据处理和可视化展示。
|
23天前
|
数据采集 机器学习/深度学习 数据可视化
深入浅出:用Python进行数据分析的入门指南
【10月更文挑战第21天】 在信息爆炸的时代,掌握数据分析技能就像拥有一把钥匙,能够解锁隐藏在庞大数据集背后的秘密。本文将引导你通过Python语言,学习如何从零开始进行数据分析。我们将一起探索数据的收集、处理、分析和可视化等步骤,并最终学会如何利用数据讲故事。无论你是编程新手还是希望提升数据分析能力的专业人士,这篇文章都将为你提供一条清晰的学习路径。
|
1月前
|
数据采集 数据可视化 数据挖掘
使用Python进行数据处理与可视化——以气温数据分析为例
【10月更文挑战第12天】使用Python进行数据处理与可视化——以气温数据分析为例
187 0