基于观测器的T-S模糊系统故障分析simulink仿真

简介: 基于观测器的T-S模糊系统故障分析simulink仿真

1.算法描述

   T-S模糊模型是复杂非线性系统模糊建模中的一种典型的模糊动态模型,由Takagi 和Sugeno 于1985 年提出,其主要特点:前提部依据系统输入、输出间是否存在局部线性关系来进行划分,结论部由多项式线性方程来表达,从而构成各条规则间的线性组合,使非线性系统的全局输出具有良好的线性描述特性。模糊逻辑的设计不依赖被控对象的模型,但却非常依赖专家经验和知识。模糊逻辑的优点:能将人的控制经验通过模糊规则融入控制器中,通过设计模糊规则,实现高水平的控制器设计。
   T-S模糊模型分为2种类型,一型T-S模糊系统是表示光滑非线性系统的有力工具。一般地,两种方法可以获得一型T-S模糊模型。

   第一种方法主要基于系统的输入-输出数据,并运用系统辨识算法获得一型T-S模糊模型。当无法获得非线性系统的数学模型,而系统的输入-输出数据又可以获得时,主要采用这一方法。
   第二种建模方法主要适合于非线性系统数学模型已知的情形。当非线性系统的数学模型已经被建立,运用扇区非线性法或局部近似方法可以获得期望的一型T-S模糊模型。

   在T-S模糊模型中,对于双输入、单输出的系统可以用F条件语句:

image.png

来叙述。输出量u是一个数值函数f(x1,x2)。

对于1阶ts模型F推理,设第i条规则为Ri,则:

image.png

    其中和表示第i条规则中的两个模糊集合。其中pi,qi,ri都是第i条规则的中的常数,他们共同反映了系统的固有特性。当输入量xi激活m条模糊规则时,最终输出U将由这m条规则的输出ui决定。

2.仿真效果预览
matlab2022a仿真结果如下:

image.png

3.MATLAB核心程序
image.png

A1=[-0.1 50; -1 -10];%A1=3*3
A2=[-0.1-rho^2 50;-1 -10];%A2=3*3
E1=[0.1 -0.5]';%E1=3*1
E2=E1;%E2=3*1
D1=[0.01;0.05];%D1=3*1
D2=D1;%D2=3*1
C=[1 1];%C=2*3
H=0;%H=2*1=[0.01 0]'
phi=1;%eye(2)-H*inv(H'*H)H'
r1=0.5;r2=0.5;
%%%%%%%%
setlmis([])
% 定义未知变量
Gama=lmivar(2,[1 1])%(2,[1 2])
L1=lmivar(2,[2 1])%(2,[3 2])
L2=lmivar(2,[2 1])%(2,[3 2])
M1=lmivar(2,[1 1])%(2,[1 2])
M2=lmivar(2,[1 1])%(2,[1 2])
P=lmivar(1,[2 1])%(1,[3 1])
%LMI i=1
lmiterm([1 1 1 P],1,A1,'s')
% lmiterm([1 1 1 P],-1,D1*inv(H)*C1,'s')
lmiterm([1 1 1 L1],1,C,'s')
lmiterm([1 2 1 Gama],1,phi*C*A1)
lmiterm([1 2 1 M1],1,C)
lmiterm([1 1 2 P],1,E1)
lmiterm([1 1 3 P],-1,D1)
lmiterm([1 1 3 L1],-1,H)
lmiterm([1 2 2 Gama],1,phi*C*E1,'s')
lmiterm([1 2 3 Gama],-1,phi*C*D1)
lmiterm([1 2 3 M1],-1,H)
lmiterm([1 2 4 0],1)
lmiterm([1 3 3 0],-r1*r1)
lmiterm([1 4 4 0],-r2*r2)
%LMI i=2
lmiterm([2 1 1 P],1,A2,'s')
lmiterm([2 1 1 L2],1,C,'s')
lmiterm([2 2 1 Gama],1,phi*C*A2)
lmiterm([2 2 1 M2],1,C)
lmiterm([2 1 2 P],1,E2)
lmiterm([2 1 3 P],-1,D2)
lmiterm([2 1 3 L2],-1,H)
lmiterm([2 2 2 Gama],1,phi*C*E2,'s')
lmiterm([2 2 3 Gama],-1,phi*C*D2)
lmiterm([2 2 3 M2],-1,H)
lmiterm([2 2 4 0],1)
lmiterm([2 3 3 0],-r1*r1)
lmiterm([2 4 4 0],-r2*r2)
%LMI 3
lmiterm([3 1 1 P],-1,1)
%求解器
 LMIs=getlmis 
[tmin,xfeas]=feasp(LMIs,[0,0,1000,0,0],-0.001)%
%求解各变量的值
P=dec2mat(LMIs,xfeas,P)
Gama=dec2mat(LMIs,xfeas,Gama)
L1=dec2mat(LMIs,xfeas,L1)
L2=dec2mat(LMIs,xfeas,L2)
%  r=dec2mat(LMIs,xfeas,r)
M1=dec2mat(LMIs,xfeas,M1)
M2=dec2mat(LMIs,xfeas,M2)
A_098
相关文章
|
算法
m基于Simulink的稳定频差光锁相环系统性能仿真
m基于Simulink的稳定频差光锁相环系统性能仿真
91 0
|
机器学习/深度学习 传感器 算法
【板球仿真】基于simulink的模糊控制板球系统仿真
【板球仿真】基于simulink的模糊控制板球系统仿真
|
算法
大林算法控制仿真实验(计控实验六simulink)
大林算法控制仿真实验(计控实验六simulink)
804 0
大林算法控制仿真实验(计控实验六simulink)
|
16天前
|
编解码 算法 索引
基于simulink的模拟锁相环和数字锁相环建模与对比仿真
本研究利用Simulink对模拟锁相环(PLL)和数字锁相环(DPLL)进行建模,通过对比两者的收敛曲线及锁定频率值,分析其性能差异。系统采用MATLAB2022a版本,详细介绍了PLL和DPLL的工作原理,涵盖鉴相器、滤波器及振荡器等关键组件的功能与数学描述。
|
15天前
|
机器学习/深度学习 流计算
基于simulink的直接转矩控制方法建模与性能仿真
本研究基于Simulink实现直接转矩控制(DTC)建模与仿真,采用电压空间矢量控制及Park、Clark变换,实现电机磁场定向控制。系统通过磁链观测器、转矩估计器等模块,精确控制电机转矩和磁链,提高控制性能。MATLAB2022a版本实现核心程序与模型。
|
1月前
|
算法
基于模糊PID控制器的的无刷直流电机速度控制simulink建模与仿真
本课题基于模糊PID控制器对无刷直流电机(BLDCM)进行速度控制的Simulink建模与仿真。该系统融合了传统PID控制与模糊逻辑的优势,提高了BLDCM的速度动态响应、抗干扰能力和稳态精度。通过模糊化、模糊推理和解模糊等步骤,动态调整PID参数,实现了对电机转速的精确控制。适用于多种工况下的BLDCM速度控制应用。
|
4月前
|
运维 安全
基于simulink的分布式发电系统自动重合闸的建模与仿真分析
本课题研究配电系统中分布式电源接入后的自动重合闸问题,着重分析非同期重合闸带来的冲击电流及其影响。通过Simulink搭建模型,仿真不同位置及容量的分布式电源对冲击电流的影响,并对比突发性和永久性故障情况。利用MATLAB2022a进行参数设置与仿真运行,结果显示非同期重合闸对系统安全构成挑战,需通过优化参数提升系统性能。
基于simulink的简易电机电力系统建模与仿真性能分析
本课题在Simulink中构建了一个50Hz的简易电力系统模型以研究其性能。电机电力系统由电源、电机、控制系统和负载构成,Simulink通过模块化方式实现了系统建模与仿真,便于理解和优化系统性能。
|
5月前
|
算法
基于模糊PID的直流电机控制系统simulink建模与仿真
- **课题概述**: 实现了PID与模糊PID控制器的Simulink建模,对比二者的控制响应曲线。 - **系统仿真结果**: 模糊PID控制器展现出更快的收敛速度与更小的超调。 - **系统原理简介**: - **PID控制器**: 一种广泛应用的线性控制器,通过比例、积分、微分作用控制偏差。 - **模糊PID控制器**: 结合模糊逻辑与PID控制,动态调整PID参数以优化控制性能。 - **模糊化模块**: 将误差和误差变化率转换为模糊量。 - **模糊推理模块**: 根据模糊规则得出控制输出。 - **解模糊模块**: 将模糊控制输出转换为实际控制信号。
|
7月前
|
机器学习/深度学习 算法
基于Mamdani模糊神经网络的调速控制系统simulink建模与仿真
基于Mamdani模糊神经网络的调速控制系统simulink建模与仿真