C语言---函数递归---详解

简介: C语言---函数递归---详解
🚀write in front🚀
📝个人主页: 认真写博客的夏目浅石.
🎁欢迎各位→点赞👍 + 收藏⭐️ + 留言📝​
📣系列专栏: 鹏哥带我学c带我飞
💬总结:希望你看完之后,能对你有所帮助,不足请指正!共同学习交流 🖊
✉️不如沉默去做,看结局怎么去说 ♐
在这里插入图片描述

@TOC


前言

上次函数剩下一个递归没讲,今天我想写一下函数递归这个内容


1. 🌸什么是函数递归

程序调用自身的编程技巧称为递归( recursion)。
递归做为一种算法在程序设计语言中广泛应用。 一个过程或函数在其定义或说明中有直接或间接
调用自身的一种方法,它通常把一个大型复杂的问题层层转化为一个与原问题相似的规模较小的问题来求解,递归策略只需少量的程序就可描述出解题过程所需要的多次重复计算,大大地减少了程序的代码量。
递归的主要思考方式在于: 把大事化小。

2. 🏵️递归的两个必要条件

(1) 存在限制条件,当满足这个限制条件的时候,递归便不再继续。
(2) 每次递归调用之后越来越接近这个限制条件

2.1 练习1:打印一个数的每一位

接受一个整型值(无符号),按照顺序打印它的每一位。

示例:
输入:1234,
输出: 1 2 3 4

思路:

  1. 递归就是把大事化小,函数自己调用自己。

    1. 按照顺序打印他的每一位,我们就用1234%10就会等于4,这样就打印出一个4了,那怎么打印其他的呢?123怎么来呢?1234/10=123,再继续123%10就等于3以此类推。
    2. 这里我们写一个 print 函数,让print函数自己调用自己实现递归。if 语句判断 n 是否是个位数,当 n 是个位数就直接打印n%10;当 n 不是个位数就先 n/10,再打印 n %10
#include <stdio.h>
void print(unsigned int n)
{
    if (n > 9)
    {
        print(n / 10);
    }
    printf("%d ", n % 10);
}
int main()
{
    unsigned int num = 0;
    scanf("%u", &num);
    print(num);//按照顺序打印num的每一位
    return 0;
}

图解:
在这里插入图片描述
在这里插入图片描述

2.2 练习2:求字符串长度(strlen 模拟实现)

编写函数不允许创建临时变量,求字符串的长度。

示例:
输入:abc
输出:3
思路:
递归就是把大事化小,函数自己调用自己。
strlen 求字符串长度就是遇到 \0 才会停下。
我们要计算一个字符串的长度,字符串为 abc,我们可以把 my_strlen(arr) 转化成:
my_strlen(“abc”)
1+my_strlen(“bc”)
1+1+my_strlen(“c”)
1+1+1+my_strlen(" ") //空字符里面有 \0
#include <stdio.h>
#include <string.h>
int my_strlen(char* str)
{
    if (*str != '\0')
        return 1 + my_strlen(str + 1);
    else
        return 0;
}
int main()
{
    char arr[] = "abc";
    int len = my_strlen(arr);
    printf("%d\n", len);
    return 0;
}

图解:
在这里插入图片描述

3. 💐递归与迭代

3.1练习3:求 n 的阶乘(不考虑溢出)

示例:
输入:5
输出:120
在这里插入图片描述
//递归求n的阶乘
#include <stdio.h>
int Fac(int n)
{
    if (n <= 1)
        return 1;
    else
        return n * Fac(n - 1);
}
int main()
{
    int n = 0;
    scanf("%d", &n);
    int ret = Fac(n);
    printf("%d\n", ret);
    return 0;
}

3.1.2 迭代(非递归)求n的阶乘

//迭代(非递归)求n的阶乘
#include <stdio.h>
int Fac(int n)
{
    int i = 0;
    int ret = 1;
    for (i = 1; i <= n; i++)
    {
        ret = ret * i;
    }
    return ret;
}
int main()
{
    int n = 0;
    scanf("%d", &n);
    int ret = Fac(n);
    printf("%d\n", ret);
    return 0;
}

**总结:
一个问题既可以用递归的方式求解也可以用非递归的求解,非递归就是迭代,无论是递归的方式还是非递归的方式都很容易理解。迭代是指一件事情反复去做,但是迭代不一定是循环,循环是迭代的一种情况。**

3.2 练习4:求第 n 个斐波那契数(不考虑溢出)

3.2.1 递归求第 n 个斐波那契数

在这里插入图片描述
在这里插入图片描述

//递归实现
#include <stdio.h>
int Fib(int n)
{
    if (n <= 2)
        return 1;
    else
        return Fib(n - 1) + Fib(n - 2);
}
int main()
{
    int n = 0;
    scanf("%d", &n);
    int ret = Fib(n);
    printf("%d\n", ret);
    return 0;
}

**但是我们发现有问题:
在使用 fib 这个函数的时候如果我们要计算第40个斐波那契数字的时候特别耗费时间。为什么呢?我们发现 fib 函数在调用的过程中很多计算其实在一直重复。我们将代码修改一下:**

#include <stdio.h>
int count = 0;//全局变量
int Fib(int n)
{
    if (n == 3)
        count++;
    if (n <= 2)
        return 1;
    else
        return Fib(n - 1) + Fib(n - 2);
}
int main()
{
    int n = 0;
    scanf("%d", &n);
    int ret = Fib(n);
    printf("%d\n", ret);
    printf("count=%d\n",count);
    return 0;
}

看输出结果我们会发现 count 是一个很大很大的值。我们在计算第40个斐波那契数的时候第3个数重复计算了39088169次,第3个数被重复计算了这么多次,那第4 ,5,6等数也都会被重复计算很多次。这个程序的效率就会很低,因为重复计算的次数太多了。所以斐波那契数是不适合使用递归求解的,接下来试试非递归的求解。

3.2.2 迭代(非递归)求第n个斐波那契数

//非递归求第n个斐波那契数
#include <stdio.h>
int Fib(int n)
{
    int a = 1;
    int b = 1;
    int c = 1;
    while (n > 2)
    {
        c = a + b;
        a = b;
        b = c;
        n--;
    }
    return c;
}
int main()
{
    int n = 0;
    scanf("%d", &n);
    int ret = Fib(n);
    printf("%d\n", ret);
    return 0;
}

**许多问题是以递归的形式进行解释的,这只是因为它比非递归的形式更为清晰。
但是这些问题的迭代实现往往比递归实现效率更高,虽然代码的可读性稍微差些。
当一个问题相当复杂,难以用迭代实现时,此时递归实现的简洁性便可以补偿它所带来的运行时开销**

4.🌻补充练习

4.1 计算一个数的每位之和(递归实现)

示例:
写一个递归函数DigitSum(n),输入一个非负整数,返回组成它的数字之和。
示例:调用DigitSum(1729),则应该返回1+7+2+9,它的和是19
输入:1729
输出:19

思路:我们将1729的每一位拆出来
DigitSum(1729)
DigitSum(172)+9
DigitSum(17)+9+2
DigitSum(1)+7+9+2

//计算一个数的每位之和(递归实现)
#include <stdio.h>
int DigitSum(unsigned int n)
{
    if (n < 10)
        return n;
    else
        return DigitSum(n / 10) + n % 10;
}
int main()
{
    unsigned int num = 0;
    scanf("%u", &num);
    int sum = DigitSum(num);
    printf("%d\n", sum);
    return 0;
}

4.2 写一个函数实现n的k次方(递归实现)

在这里插入图片描述

示例:
输入:2
输出 :8.000000
//递归实现n的k次方
#include <stdio.h>
double Pow(int n, int k)
{
    if (k > 0)
        return n * Pow(n, k - 1);
    else if (k == 0)
        return 1;
    else
        return 1.0 / Pow(n, -k);
      //这种情况下返回的值是小数所以用double接收这个函数的返回值
}
int main()
{
    int n = 0;
    int k = 0;
    scanf("%d %d", &n, &k);
    double ret = Pow(n,k);
    printf("%lf\n", ret);
    return 0;
}

4.3 字符串逆序

在这里插入图片描述

编写一个函数 reverse_string(char * string)(递归实现)
实现:将参数字符串中的字符反向排列,不是逆序打印。
比如:
char arr[] = "abcdef";
逆序之后数组的内容变成:fedcba

4.3.1 非递归实现字符串逆序

下标法思路:

  1. 数组arr[]=“abcdef”,我们发现逆序就是 a 和 f 交换,b 和 e 交换,c 和 d 交换,就是第一个字符和最后一个字符交换,第二个和倒数第二个交换,以此类推。
  2. 我们现在就是要找到他们就能进行交换了,我们给一个左边的下标 left = 0 给 a;给一个右下标 right = len-1 给 f。让左右下标锁定两个元素进行交换,交换完成后 left++,right- -,然后重新锁定新的元素进行交换,以此类推

在这里插入图片描述

//下标法
#include <stdio.h>
#include <string.h>
void reverse_string(char* str)
{
    int len = strlen(str);
    int left = 0;
    int right = len - 1;
    while (left < right)
    {
        char tmp = *(str + left);
        *(str + left) = *(str + right);
        *(str + right) = tmp;
        left++;
        right--;
    }
}
int main()
{
    char arr[] = "abcdef";
    reverse_string(arr);
    printf("%s\n", arr);//fedcba
    return 0;
}
指针法思路:<指针法和下标法非常类似>
我们用一个 left 指针指向 a,用一个 right 指针指向 f ,然后再像前面下标法那样交换就可以了
//指针法
#include <stdio.h>
#include <string.h>
void reverse_string(char* str)
{
    int len = strlen(str);
    char* left = str;
    char* right = str + len - 1;
    while (left < right)
    {
        char tmp = *left;
        *left = *right;
        *right = tmp;
        left++;
        right--;
    }
}
int main()
{
    char arr[] = "abcdef";
    reverse_string(arr);
    printf("%s\n", arr);//fedcba
    return 0;
}
补充:
strlen 是库函数,是计算字符串长度的,只针对字符串,关注 \0 的位置,\0 之前出现多少个字符,字符串的长度就是多少。
sizeof 是操作符,是计算数据占用内存空间的大小,单位是字节,不在乎内存中存放的是什么。

4.3.2 递归实现字符串逆序

思路:把后面的字符赋值给前面的字符,后面的字符用\0覆盖
第一步:先创建一个变量tmp,将我们的 a 取出存放在 tmp 里面;
第二步:将后面的字符 f 存放在前面的字符 a 的位置(就是把 f 赋值给 a);
第三步:后面的字符 f 的位置用 \0 覆盖,然后逆序中间的字符 str+1 指向 b 的位置,逆序 bcde 字符;
第四步:将 tmp 中的 a 存放到后面字符的位置 上,以此类推。
在这里插入图片描述
//递归实现字符串逆序
#include <stdio.h>
int my_strlen(char* str)
{
    int count = 0;
    while (*str != '\0')
    {
        count++;
        str++;
    }
    return count;
}
void reverse_string(char* str)
{
    int len = my_strlen(str);
    char tmp = *str;
    *str = *(str + len - 1);
    *(str + len - 1) = '\0';
    if (my_strlen(str + 1) > 1)
        reverse_string(str + 1);
    *(str + len - 1) = tmp;

}
int main()
{
    char arr[] = "abcdef";
    reverse_string(arr);
    printf("%s\n", arr);//fedcba
    return 0;
}

🌺结语

蟹蟹大家看我的本篇博客,我是夏目浅石,我希望我们一起学习进步,刷题无数,咱们下期见。
在这里插入图片描述

相关文章
|
15天前
|
存储 Serverless C语言
【C语言基础考研向】11 gets函数与puts函数及str系列字符串操作函数
本文介绍了C语言中的`gets`和`puts`函数,`gets`用于从标准输入读取字符串直至换行符,并自动添加字符串结束标志`\0`。`puts`则用于向标准输出打印字符串并自动换行。此外,文章还详细讲解了`str`系列字符串操作函数,包括统计字符串长度的`strlen`、复制字符串的`strcpy`、比较字符串的`strcmp`以及拼接字符串的`strcat`。通过示例代码展示了这些函数的具体应用及注意事项。
|
19天前
|
存储 C语言
C语言程序设计核心详解 第十章:位运算和c语言文件操作详解_文件操作函数
本文详细介绍了C语言中的位运算和文件操作。位运算包括按位与、或、异或、取反、左移和右移等六种运算符及其复合赋值运算符,每种运算符的功能和应用场景都有具体说明。文件操作部分则涵盖了文件的概念、分类、文件类型指针、文件的打开与关闭、读写操作及当前读写位置的调整等内容,提供了丰富的示例帮助理解。通过对本文的学习,读者可以全面掌握C语言中的位运算和文件处理技术。
|
19天前
|
存储 C语言
C语言程序设计核心详解 第七章 函数和预编译命令
本章介绍C语言中的函数定义与使用,以及预编译命令。主要内容包括函数的定义格式、调用方式和示例分析。C程序结构分为`main()`单框架或多子函数框架。函数不能嵌套定义但可互相调用。变量具有类型、作用范围和存储类别三种属性,其中作用范围分为局部和全局。预编译命令包括文件包含和宏定义,宏定义分为无参和带参两种形式。此外,还介绍了变量的存储类别及其特点。通过实例详细解析了函数调用过程及宏定义的应用。
|
24天前
|
Linux C语言
C语言 多进程编程(三)信号处理方式和自定义处理函数
本文详细介绍了Linux系统中进程间通信的关键机制——信号。首先解释了信号作为一种异步通知机制的特点及其主要来源,接着列举了常见的信号类型及其定义。文章进一步探讨了信号的处理流程和Linux中处理信号的方式,包括忽略信号、捕捉信号以及执行默认操作。此外,通过具体示例演示了如何创建子进程并通过信号进行控制。最后,讲解了如何通过`signal`函数自定义信号处理函数,并提供了完整的示例代码,展示了父子进程之间通过信号进行通信的过程。
|
24天前
|
C语言
C语言 字符串操作函数
本文档详细介绍了多个常用的字符串操作函数,包括 `strlen`、`strcpy`、`strncpy`、`strcat`、`strncat`、`strcmp`、`strncpy`、`sprintf`、`itoa`、`strchr`、`strspn`、`strcspn`、`strstr` 和 `strtok`。每个函数均提供了语法说明、参数解释、返回值描述及示例代码。此外,还给出了部分函数的自实现版本,帮助读者深入理解其工作原理。通过这些函数,可以轻松地进行字符串长度计算、复制、连接、比较等操作。
|
25天前
|
SQL 关系型数据库 C语言
PostgreSQL SQL扩展 ---- C语言函数(三)
可以用C(或者与C兼容,比如C++)语言编写用户自定义函数(User-defined functions)。这些函数被编译到动态可加载目标文件(也称为共享库)中并被守护进程加载到服务中。“C语言函数”与“内部函数”的区别就在于动态加载这个特性,二者的实际编码约定本质上是相同的(因此,标准的内部函数库为用户自定义C语言函数提供了丰富的示例代码)
|
1月前
|
C语言
【C语言】字符串及其函数速览
【C语言】字符串及其函数速览
25 4
|
1月前
|
机器学习/深度学习 编译器 Serverless
C语言中函数
C语言中函数
22 0
|
1月前
|
存储 Serverless C语言
C语言中的标准库函数
C语言中的标准库函数
28 0
|
1月前
|
算法 编译器 C语言
【C语言】递归
【C语言】递归
13 0