【Linux进程】四、printf函数的缓冲区刷新机制与父子进程间的“读共享写拷贝”问题

简介: 【Linux进程】四、printf函数的缓冲区刷新机制与父子进程间的“读共享写拷贝”问题

1. printf函数缓冲区刷新与C语言的 ‘\n’ 字符

我们先看一个简单的程序

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/types.h>
int main(int argc, char* argv[])
{
  printf("begin...");
  fork();
  printf("end...\n");
  return 0;
}

运行后发现打印了两次begin,而根据前面的学习,实际上应该打印一次才对

实际上这是printf()函数缓冲区的机制造成的,缓冲区我们在Linux系统调用专题中已经讲过了。在系统调用时,遇到 ‘/n’ 输出行缓冲,我们这里第一个printf()函数中没有 ‘\n’ 字符,所以第一个printf()函数执行的时候没有打印缓冲区的内容,当我们fork一个子进程的时候,我们既没有输出这个缓冲区的内容,也没有刷新缓冲区,所以这段内容恢复至到子进程中。等到父子进程都执行到第二个printf()函数的时候,遇到 ‘\n’ 打印缓冲区内容,就把上一次和这一次的内容一块打印出来了。这也是为什么fork在第一个printf()语句之后,子进程却能打印出一个printf()语句中内容的原因,因为缓冲区没有刷新,所以被赋值给了子进程。这也告诉我们Linux和Windows是有区别的,在Linux下用pintf()函数一定要加 ‘\n’ 。

所以我们只要在第一个printf()语句中加上 ‘\n’ 字符就可以了。

2. 父子进程空间共享问题

执行fork()函数后,子进程与父进程有相同的全局变量、.data段、.text段、栈、堆、环境变量、用户ID、宿主目录、进程工作目录、信号处理方式等;不同之处在于,进程自己的ID、父进程ID、fork()函数返回值、进程运行时间(父进程在fork之前就已经运行了,而子进程在fork之后才开始运行)、定时器、未决信号集等不同。但是,子进程并不是直接把父进程0到3G的用户空间全部复制,而是遵循一种读时共享、写时复制这样的原则,这样无论是子进程执行父进程的逻辑,还是执行自己的逻辑都能节省内存开销。也就是说,父子进程的虚拟地址空间中,比如说数据段,它们都是指向同一块物理地址空间的,如果子进程只是读取该空间,那么就没必要复制这块物理内存,即读时共享,如果子进程要修改这块物理空间,那么将会复制一块物理空间然后修改复制的空间,即写时复制。

这里要注意,即便是全局数据,也遵循读时共享写时复制的原则,也就是说全局变量在父子进程之间也不是共享的。下面我们通过一个例子演示这种读时共享写时复制的原则。

/************************************************************
  >File Name  : shared_test.c
  >Author     : Mindtechnist
  >Company    : Mindtechnist
  >Create Time: 2022年05月19日 星期四 16时25分27秒
************************************************************/
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
int g_data = 10;
int main(int argc, char* argv[])
{
  pid_t pid = fork();
  if(pid == 0)
  {
    printf("child: g_data = %d\n", g_data);
    g_data = 11;
    printf("child: g_data = %d\n", g_data);
    sleep(2);
    g_data = 13;
    printf("child: g_data = %d\n", g_data);
  }
  if(pid > 0)
  {
    sleep(1); /*1.保证printf时子进程已经修改全局变量 2.防止父进程提前结束*/
    printf("call: g_data = %d\n", g_data);  
    g_data = 12;
    printf("call: g_data = %d\n", g_data);
    sleep(2);
  }
  return 0;
}

编译运行,我们可以在打印结果中看到,当子进程修改全局变量的时候,父进程和子进程的全局变量值就可以使不再一样了,这就是写时复制,这时候,父子进程都有自己的g_data,修改的时候也是修改的自己的g_data的值。

相关文章
|
29天前
|
Web App开发 Linux 程序员
获取和理解Linux进程以及其PID的基础知识。
总的来说,理解Linux进程及其PID需要我们明白,进程就如同汽车,负责执行任务,而PID则是独特的车牌号,为我们提供了管理的便利。知道这个,我们就可以更好地理解和操作Linux系统,甚至通过对进程的有效管理,让系统运行得更加顺畅。
66 16
|
14天前
|
监控 Shell Linux
Linux进程控制(详细讲解)
进程等待是系统通过调用特定的接口(如waitwaitpid)来实现的。来进行对子进程状态检测与回收的功能。
|
13天前
|
存储 负载均衡 算法
Linux2.6内核进程调度队列
本篇文章是Linux进程系列中的最后一篇文章,本来是想放在上一篇文章的结尾的,但是想了想还是单独写一篇文章吧,虽然说这部分内容是比较难的,所有一般来说是简单的提及带过的,但是为了让大家对进程有更深的理解与认识,还是看了一些别人的文章,然后学习了学习,然后对此做了总结,尽可能详细的介绍明白。最后推荐一篇文章Linux的进程优先级 NI 和 PR - 简书。
|
14天前
|
存储 Linux Shell
Linux进程概念-详细版(二)
在Linux进程概念-详细版(一)中我们解释了什么是进程,以及进程的各种状态,已经对进程有了一定的认识,那么这篇文章将会继续补全上篇文章剩余没有说到的,进程优先级,环境变量,程序地址空间,进程地址空间,以及调度队列。
|
14天前
|
Linux 调度 C语言
Linux进程概念-详细版(一)
子进程与父进程代码共享,其子进程直接用父进程的代码,其自己本身无代码,所以子进程无法改动代码,平时所说的修改是修改的数据。为什么要创建子进程:为了让其父子进程执行不同的代码块。子进程的数据相对于父进程是会进行写时拷贝(COW)。
|
3月前
|
Linux 数据库 Perl
【YashanDB 知识库】如何避免 yasdb 进程被 Linux OOM Killer 杀掉
本文来自YashanDB官网,探讨Linux系统中OOM Killer对数据库服务器的影响及解决方法。当内存接近耗尽时,OOM Killer会杀死占用最多内存的进程,这可能导致数据库主进程被误杀。为避免此问题,可采取两种方法:一是在OS层面关闭OOM Killer,通过修改`/etc/sysctl.conf`文件并重启生效;二是豁免数据库进程,由数据库实例用户借助`sudo`权限调整`oom_score_adj`值。这些措施有助于保护数据库进程免受系统内存管理机制的影响。
|
3月前
|
Linux Shell
Linux 进程前台后台切换与作业控制
进程前台/后台切换及作业控制简介: 在 Shell 中,启动的程序默认为前台进程,会占用终端直到执行完毕。例如,执行 `./shella.sh` 时,终端会被占用。为避免不便,可将命令放到后台运行,如 `./shella.sh &`,此时终端命令行立即返回,可继续输入其他命令。 常用作业控制命令: - `fg %1`:将后台作业切换到前台。 - `Ctrl + Z`:暂停前台作业并放到后台。 - `bg %1`:让暂停的后台作业继续执行。 - `kill %1`:终止后台作业。 优先级调整:
176 5
|
11月前
|
运维 关系型数据库 MySQL
掌握taskset:优化你的Linux进程,提升系统性能
在多核处理器成为现代计算标准的今天,运维人员和性能调优人员面临着如何有效利用这些处理能力的挑战。优化进程运行的位置不仅可以提高性能,还能更好地管理和分配系统资源。 其中,taskset命令是一个强大的工具,它允许管理员将进程绑定到特定的CPU核心,减少上下文切换的开销,从而提升整体效率。
掌握taskset:优化你的Linux进程,提升系统性能
|
11月前
|
弹性计算 Linux 区块链
Linux系统CPU异常占用(minerd 、tplink等挖矿进程)
Linux系统CPU异常占用(minerd 、tplink等挖矿进程)
307 4
Linux系统CPU异常占用(minerd 、tplink等挖矿进程)
|
10月前
|
算法 Linux 调度
探索进程调度:Linux内核中的完全公平调度器
【8月更文挑战第2天】在操作系统的心脏——内核中,进程调度算法扮演着至关重要的角色。本文将深入探讨Linux内核中的完全公平调度器(Completely Fair Scheduler, CFS),一个旨在提供公平时间分配给所有进程的调度器。我们将通过代码示例,理解CFS如何管理运行队列、选择下一个运行进程以及如何对实时负载进行响应。文章将揭示CFS的设计哲学,并展示其如何在现代多任务计算环境中实现高效的资源分配。