软件测试|Python实用炫酷技能——推导式

简介: 软件测试|Python实用炫酷技能——推导式

在这里插入图片描述

Python推导式

判断一个程序员水平的高低,不能光看他的发量,也不能光看他的代码量,还要看他代码蕴含的思想,代码的质量。代码蕴含的思想主要体现在各种设计模式的运用上,而代码的质量就既要实现需求,又要保证代码的简洁优雅。保证代码质量是需要长期积累,养成良好的编程习惯,不断思考优化的。

今天就给大家介绍一种实用的保证代码简洁的武功—— Python 推导式。

什么是推导式

推导式 comprehensions(又称解析式),是 python 的一种独有特性。推导式是可以从一个数据序列构建另一个新的数据序列。

看推导式的定义很抽象,下面我们来看看具体的例子,通过例子来学习常用的四种推导式。

列表推导式

我们先来看一个需求:

快速创建一个包含元素1-9的平方的列表

面对这个需求,我们通常的实现方式是这样的:

list = []
for i in range(1, 10):
    list.append(i*i)
print(list) # [1, 4, 9, 16, 25, 36, 49, 64, 81]

但是如果我们使用列表推导式,只需要一行代码就可以实现:

lis = [x * x for x in range(1, 10)]
print(list) # [1, 4, 9, 16, 25, 36, 49, 64, 81]

查看代码结构,我们可以发现:

变量名 = [表达式 for 变量 in 列表]

更复杂一些的例子:

list = [x * y for x in range(1, 10) for y in range(1, 10)]
print(list)
# [1, 2, 3, 4, 5, 6, 7, 8, 9, 2, 4, 6, 8, 10, 12, 14, 16, 18, 3, 6, 9, 12, 15, 18, 21, 24, 27, 4, 8, 12, 16, 20, 24, 28, 32, 36, 5, 10, 15, 20, 25, 30, 35, 40, 45, 6, 12, 18, 24, 30, 36, 42, 48, 54, 7, 14, 21, 28, 35, 42, 49, 56, 63, 8, 16, 24, 32, 40, 48, 56, 64, 72, 9, 18, 27, 36, 45, 54, 63, 72, 81]

这个是多个变量的类型,因此我们可以扩展上面的列表推导式:

变量名 = [表达式 for 变量 in 列表 for 变量 in xxx]

列表推导式还可以加上条件,变成这样

变量名 = [表达式 for 变量 in 列表 if 条件]

例如,快速创建一个包含1-100之间所有偶数的列表。

list = [i for i in range(1, 101) if i % 2 == 0]
print(list) 
# [2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, 100]

字典推导式

字典推导式的形式和列表推导式类似,语法也是类似的,只不过字典推导式返回的结果是字典。

变量名 = {key: value表达式}

来看一个实例,

dict = {x: x/2 for x in range(1,11) if x % 2 == 0}
print(dict)
# 输出: {2: 1.0, 4: 2.0, 6: 3.0, 8: 4.0, 10: 5.0}

集合推导式

集合推导式与列表和字典类似,所以这里直接写出来:

变量名 = {表达式 for 变量 in 列表 for 变量 in xxx}

或者带有条件:

变量名 = {表达式 for 变量 in 列表 if 条件}

实际应用,生成一个存储10以内偶数的集合

set = {x for x in range(10) if x % 2 == 0}
print(set)

# 输出 {0, 2, 4, 6, 8}

元组推导式

按照上述3个推导式的思路,我们先试着通过推导式输出一个元组,代码如下:

tup=(x for x in range(1,10))
print(tup)

# 输出: <generator object <genexpr> at 0x00000221A68C7BC8>

并没有如我们预期的那样生成元组,上面的代码返回的变量其实是一个生成器,并不是一个元组。其实没有真正的元组推导式,我们只能用一个类似的方法来生成元组。

上面代码进行一下小改进就可以生成元组了:

tup=tuple(x for x in range(1,10))
print(tup)

# 输出: (1, 2, 3, 4, 5, 6, 7, 8, 9)

在推导式前,加上tuple就可以达到我们的目标。

总结

这里介绍了四种 python 的推导式,主要是用来简化 循环的代码,生成不同的数据结构用的。当然,从这些基础的表达式语法出发,还可以运用到复杂的推导式,大家在写代码时留心使用就会发现它的强大之处。在面试时,也是一个炫技加分项!

相关文章
|
1月前
|
Web App开发 前端开发 JavaScript
探索Python科学计算的边界:利用Selenium进行Web应用性能测试与优化
【10月更文挑战第6天】随着互联网技术的发展,Web应用程序已经成为人们日常生活和工作中不可或缺的一部分。这些应用不仅需要提供丰富的功能,还必须具备良好的性能表现以保证用户体验。性能测试是确保Web应用能够快速响应用户请求并处理大量并发访问的关键步骤之一。本文将探讨如何使用Python结合Selenium来进行Web应用的性能测试,并通过实际代码示例展示如何识别瓶颈及优化应用。
99 5
|
1月前
|
测试技术 持续交付 Apache
Python性能测试新风尚:JMeter遇上Locust,性能分析不再难🧐
【10月更文挑战第1天】Python性能测试新风尚:JMeter遇上Locust,性能分析不再难🧐
130 3
|
1月前
|
安全 Linux 网络安全
Kali 渗透测试:基于结构化异常处理的渗透-使用Python编写渗透模块(一)
Kali 渗透测试:基于结构化异常处理的渗透-使用Python编写渗透模块(一)
|
1月前
|
Python Windows 网络安全
Kali 渗透测试:基于结构化异常处理的渗透-使用Python编写渗透模块(二)
Kali 渗透测试:基于结构化异常处理的渗透-使用Python编写渗透模块(二)
|
10天前
|
Java 测试技术 持续交付
【入门思路】基于Python+Unittest+Appium+Excel+BeautifulReport的App/移动端UI自动化测试框架搭建思路
本文重点讲解如何搭建App自动化测试框架的思路,而非完整源码。主要内容包括实现目的、框架设计、环境依赖和框架的主要组成部分。适用于初学者,旨在帮助其快速掌握App自动化测试的基本技能。文中详细介绍了从需求分析到技术栈选择,再到具体模块的封装与实现,包括登录、截图、日志、测试报告和邮件服务等。同时提供了运行效果的展示,便于理解和实践。
45 4
【入门思路】基于Python+Unittest+Appium+Excel+BeautifulReport的App/移动端UI自动化测试框架搭建思路
|
5天前
|
Python
探索Python中的列表推导式
【10月更文挑战第38天】本文深入探讨了Python中强大而简洁的编程工具——列表推导式。从基础使用到高级技巧,我们将一步步揭示如何利用这个特性来简化代码、提高效率。你将了解到,列表推导式不仅仅是编码的快捷方式,它还能帮助我们以更加Pythonic的方式思考问题。准备好让你的Python代码变得更加优雅和高效了吗?让我们开始吧!
|
13天前
|
测试技术 持续交付 Apache
Python性能测试新风尚:JMeter遇上Locust,性能分析不再难🧐
Python性能测试新风尚:JMeter遇上Locust,性能分析不再难🧐
39 3
|
11天前
|
缓存 测试技术 Apache
告别卡顿!Python性能测试实战教程,JMeter&Locust带你秒懂性能优化💡
告别卡顿!Python性能测试实战教程,JMeter&Locust带你秒懂性能优化💡
27 1
|
22天前
|
Python
探索Python中的列表推导式
【10月更文挑战第20天】在编程世界里,时间就是一切。Python的列表推导式是节约时间、简化代码的一大利器。本文将带你深入理解并有效利用这一强大工具,从基础到高级用法,让你的代码更加简洁高效。
|
20天前
|
JSON 测试技术 持续交付
自动化测试与脚本编写:Python实践指南
自动化测试与脚本编写:Python实践指南
24 1

热门文章

最新文章