【剑指offer】二进制中1的个数&&2的幂

简介: 【剑指offer】二进制中1的个数&&2的幂

👉位运算👈


位运算是把数字将二进制表示之后,对每一位上0或者1的运算。二进制及其位运算是现代计算机学科的基石,很多底层技术都离不开位运算,因此与位运算相关的题目也经常出现在面试中。因为在我们的日常生活中,用得最多的进制就是十进制,所以很多人面对二进制及位运算的题目时多少会有点不适应。但是无需害怕,如果对位运算还不太熟悉的小伙伴,可以先看一下这篇文章:👉操作符详解👈。


👉二进制中1的个数👈


题目:

请实现一个函数,输入一个整数,输出该数二进制表示中1的个数。例如:把9表示成二进制是1001,有2位是1,。因此如果输入9,该函数的返回值为2。


可能引起死循环的解法


这是一道很基本的考查二进制和位运算的面试题,题目不是很难。基本思路:先判断整数二进制表示中最右边一位是不是1,借助把输入的整数右移一位,此时原来处于从右边数起的第二位被移动到最右边了,在判断是不是1.这样每次移动一位,直到整个整数编程0为止。


现在的问题变成了判断一个整数的最右边是不是1。这很简单,只要把整数和1做位与运算看结果是不是1就知道了。1除了最右边的一位之外所有位都是0.如果一个整数和1做位与运算的结果是1,表示该整数最右边一位是1,否则就是0。


int hammingWeight(int n) 
{
    int count = 0;
    while (n)
    {
        if (n & 1)
        {
            count++;
        }
        n >>= 1;
    }
    return count;
}

19661c25e70c4547aacccf835f1bd0c0.png


这个算法好像没有什么问题啊,那么为什么通不过测试呢?原因就是,如果给上面的函数输入一个负数就会陷入死循环了。比如:0x80000000,把负数0x80000000右移一位的时候,并不是简单地把最高位的1移到后一位变成0x40000000,而是0xC0000000.这是以内移位前是个负数,仍然要保证移位后是个负数,因此移位后高位补1。如果一直做右移运算,最终这个数字就会变成0xFFFFFFFF而陷入死循环。


不能我们稍作修改,就能够通过测试了。就是把 hammingWeight 函数的参数类型改成 unsigned int。尽管你把负数传过来,hammingWeight 函数也会把这个数当做无符号整数(正数)。

7f2b550327fa475db145452a7a53d19d.png

还有一点需要注意的是:把一个整数右移一位和把一个整数除以2在数学上是等价的,但是除法的效率比移位运算要低很多,在实际编程中华应尽可能地用移位运算符来代替乘除法。


除了上面的解法,还有没有其他解法呢?其实还有,接下来为大家介绍另一种解法。


常规解法


既然,移动输入的数字n有可能造成死循环。那我们可不可以换个方向,换成移动1呢?其实也是可以的。首先把n和1做位与运算,判断n的最低位是不是为1。接着把1左移一位得到2,再和n做位与运算,就能判断n的次低位是不是1。如此反复左移,每次都能判断你的其中一位是不是1,直至1左移变成0。


int hammingWeight(int n)
{
    int count = 0;
    unsigned int flag = 1;
    while (flag)
    {
        if (n & flag )
        {
            count++;
        }
        flag <<= 1;
    }
    return count;
}

0f44f2de43e3477689a0fce250937be0.png

奇妙的解法


在分析这种算法之前,我们先来分析一个数减去1的情况。如果一个整数不等于0,那么该整数的二进制表示至少有一位是1。先假设这个数的最右边一位是1,那么减去1时,最后一位变成0而其它所有位都保持不变。也就是相当于最后一位做了取反操作,由1变成了0。


接下来假设最后一位不是1而是0的情况。如果该整数的二进制表示中最右边的1在第m位,那么减去1时,第m位由1变成0,而第m位之后的所有0都变成1,整数中第m位之前的所有位都保持不变。举个例子:一个二进制数1100,它的第三位是从最右边数起的一个1。减去1后,第三位变成0,它的后面的两位0变成1,而前面的1保持不变,因此得到的结果是1011。


在前面两种情况中,我们可以发现一个整数减去1,都是把最右边的1变成0.如果它的右边还有0的话,所以的0都变成1,而他左边所有位都保持不变。接下来我们把一个整数和它减去1的结果做位与运算,这个操作相当于把它最右边的1变成0.以前面的二进制数1100为例,它减去1的结果是1011.我们再把1100和1011做位与运算,得到的结果是1000。我们把1100最右边的1变成0,结果刚好就是1000。


总结:


把一个整数减去1,再和原整数做位与运算,会把该整数最右边的一个1变成0。那么一个整数的二进制表示中有多少个1,就可以进行多少次这样的操作。


int hammingWeight(unsigned int n)
{
    int count = 0;
    while (n)
    {
        count++;
        n = n & (n - 1);
    }
    return count;
}

ea4bbfec16b7450eba09e54062e92f25.png


👉2的幂👈


给你一个整数 n,请你判断该整数是否是 2 的幂次方。如果是,返回 true ;否则,返回 false 。

如果存在一个整数 x 使得 n == 2x ,则认为 n 是 2 的幂次方。

示例 1:

输入:n = 1

输出:true

解释:2^0 = 1


示例 2:

输入:n = 3

输出:false


提示:

  • -2^31 <= n <= 2^31 - 1


思路:一个整数如果是2的整数次方,那么它的二进制表示中有且只有一位是1,而其它所有位都是0。根据前面的分析,把这个整数减去1之后再和它自己做位与运算,这个整数最右边的1就会变成0。我们只需判断该整数的二进制表示中是不是只有一个1就行了。


int count_bit(unsigned long n)
{
    int count = 0;
    while (n)
    {
        count++;
        n = n & (n - 1);
    }
    return count;
}
bool isPowerOfTwo(int n)
{
    if (count_bit(n) == 1)
        return true;
    else
        return false;
}

52bb4ddd9823444facec60e91fb5ccf0.png


注意:之所以count_bit函数的是参数是 unsigned long,是因为不将参数设置成 unsigned long不能通过测试。


👉总结👈


本文主要讲解了如何计算二进制中1的个数,然后引出了一种巧妙的方法 n & (n-1) 来计算二进制中1的个数,并借助这种方法来判断一个数是不是2的幂。如果大家觉得有收获的话,可以点个三连支持一下!谢谢大家啦!!!💖💝❣️

相关文章
|
7月前
《剑指offer》——二进制中1的个数
《剑指offer》——二进制中1的个数
【剑指offer】-二进制中1的个数-11/67
【剑指offer】-二进制中1的个数-11/67
【剑指offer】-数值的整数次方-12/67
【剑指offer】-数值的整数次方-12/67
剑指offer_位运算---二进制中1的个数
剑指offer_位运算---二进制中1的个数
56 0
|
机器学习/深度学习 C++
剑指offer 14. 二进制中1的个数
剑指offer 14. 二进制中1的个数
64 0
剑指offer 15. 数值的整数次方
剑指offer 15. 数值的整数次方
56 0
AcWing 26. 二进制中1的个数
AcWing 26. 二进制中1的个数
113 0
AcWing 26. 二进制中1的个数
【13. 二进制中1的个数、位运算】
## 位运算 >n 的 二进制表示中第K位是几 > >n = 15 = (1111)<sub>2</sub> >1. 先把第K位移动到最后一位 n >> k >2. 看个位是几 x & 1 > >(1)和(2)操作合并 `n >> k & 1`
114 0
【13. 二进制中1的个数、位运算】
位运算:二进制中1的个数
题目: 输入一个 32 位整数,输出该数二进制表示中 1 的个数 注意: 负数在计算机中用其绝对值的补码来表示。 数据范围: −100≤ 输入整数 ≤100 样例1: 输入:9 输出:2 解释:9的二进制表示是1001,一共有2个1。 样例2: 输入:-2 输出:31 解释:-2在计算机里会被表示成11111111111111111111111111111110, 一共有31个1。
97 0
|
Java C++
剑指offer之二进制中1的个数
剑指offer之二进制中1的个数
110 0