【推荐系统】TensorFlow复现论文NeuralCF网络结构

简介: 【推荐系统】TensorFlow复现论文NeuralCF网络结构

下图为NeutralCF的模型结构图,总共两个分支,第一个分支为GML,第二个为MLP,GML通路将两个特征的Embedding向量进行内积操作,MLP将两个特征的Embedding的向量进行拼接,然后使用多层感知机进行传播,然后将两个通路输出的向量进行拼接,导入全连接层(输出层),输出Score。

一、导包

import tensorflow as tf
from tensorflow.keras.layers import *
from tensorflow.keras.models import *
from tensorflow.keras.utils import plot_model
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import  MinMaxScaler, LabelEncoder
import itertools
import pandas as pd
import numpy as np
from tqdm import tqdm
from collections import namedtuple
import warnings
warnings.filterwarnings("ignore")

二、读取数据

# 读取数据,NCF使用的特征只有user_id和item_id
rnames = ['user_id','movie_id','rating','timestamp']
data = pd.read_csv('./data/ml-1m/ratings.dat', sep='::', engine='python', names=rnames)

三、特征编码处理

lbe = LabelEncoder()
data['user_id'] = lbe.fit_transform(data['user_id'])
data['movie_id'] = lbe.fit_transform(data['movie_id'])
train_data = data[['user_id', 'movie_id']]
train_data['label'] = data['rating']

四、使用具名元组为特征进行处理

SparseFeat = namedtuple('SparseFeat', ['name', 'vocabulary_size', 'embedding_dim'])
DenseFeat = namedtuple('DenseFeat', ['name', 'dimension'])
dnn_features_columns = [SparseFeat('user_id', train_data['user_id'].nunique(), 8),
                        SparseFeat('movie_id', train_data['movie_id'].nunique(), 8)]

五、构建模型

5.1 输入层

def build_input_layers(dnn_features_columns):
    dense_input_dict, sparse_input_dict = {}, {}
    for f in dnn_features_columns:
        if isinstance(f, SparseFeat):
            sparse_input_dict[f.name] = Input(shape=(1), name=f.name)
        elif isinstance(f, DenseFeat):
            dense_input_dict[f.name] = Input(shape=(f.dimension), name=f.name)
    return dense_input_dict, sparse_input_dict

5.2 Embedding层

def build_embedding_layers(dnn_features_columns, sparse_input_dict, prefix="", is_linear=True):
    embedding_layers_dict = {}
    sparse_feature_columns = list(filter(lambda x: isinstance(x, SparseFeat), dnn_features_columns)) if dnn_features_columns else []
    if is_linear:
        for f in sparse_feature_columns:
            embedding_layers_dict[f.name] = Embedding(f.vocabulary_size + 1, 1, name= prefix + '_1d_emb_' +  + f.name)
    else:
        for f in sparse_feature_columns:
            embedding_layers_dict[f.name] = Embedding(f.vocabulary_size + 1, f.embedding_dim, name=prefix + '_kd_emb_' +  f.name)
    return embedding_layers_dict

5.3 GML

def build_gml_layers(gml_user_embedding, gml_movie_embedding):
    return Multiply()([gml_user_embedding, gml_movie_embedding])

5.4 MLP

def build_mlp_layers(mlp_input, units=(32, 16)):
    for out_dim in units:
        mlp_input = Dense(out_dim)(mlp_input)
    return mlp_input

5.5 输出层

def bulid_output_layers(concat_output):
    return Dense(1)(concat_output)

5.6 构建模型

def NCF(dnn_features_columns):
    # 1. 获取字典输入层,键为列名,值为对应的Input
    _, sparse_input_dict = build_input_layers(dnn_features_columns)
    # 2. 获取真实输入层,使用列表存储每个列的Input
    input_layers = list(sparse_input_dict.values())
    # 3. 将SparseFeature进行Embedding,有两路,分别是GML和MLP
    embedding_gml_dict = build_embedding_layers(dnn_features_columns, sparse_input_dict, prefix="GML", is_linear=False)
    embedding_mlp_dict = build_embedding_layers(dnn_features_columns, sparse_input_dict, prefix="MLP", is_linear=False)
    # 4. 将Embedding后的特征进行展开,因为Embedding后为(?,1,8)
    gml_user_embedding = Flatten()(embedding_gml_dict['user_id'](sparse_input_dict['user_id']))
    gml_movie_embedding = Flatten()(embedding_gml_dict['movie_id'](sparse_input_dict['movie_id']))
    mlp_user_embedding = Flatten()(embedding_mlp_dict['user_id'](sparse_input_dict['user_id']))
    mlp_movie_embedding = Flatten()(embedding_mlp_dict['movie_id'](sparse_input_dict['movie_id']))
    # 5. 进行GML,就是展开后的特征进行内积
    gml_output = build_gml_layers(gml_user_embedding, gml_movie_embedding)
#     gml_output = tf.multiply(gml_movie_embedding, gml_user_embedding)
#     gml_output = Multiply()([gml_user_embedding, gml_movie_embedding])
    # 6. 进行MLP,将特征进行连接,传入MLP层
    mlp_input = Concatenate(axis=1)([mlp_user_embedding, mlp_movie_embedding])
    mlp_output = build_mlp_layers(mlp_input, (32, 16))
    # 7. 将GML和MLP层的输出进行连接
    concat_output = Concatenate(axis=1)([gml_output, mlp_output])
    # 8.传入到输出层中,获取评分
    output_layers = bulid_output_layers(concat_output)
    # 构建模型
    model = Model(input_layers, output_layers)
    return model

六、运转模型

history = NCF(dnn_features_columns)
# 编译模型
history.compile(optimizer="adam", 
                loss="mse", 
                metrics=['mae'])
# 训练数据做成字典,与输入层做对应
train_model_input = {name: train_data[name] for name in ['user_id', 'movie_id']}
history.fit(train_model_input, 
            train_data['label'].values,
            batch_size=128, 
            epochs=2, 
            validation_split=0.2)

# 绘制网络结构图
plot_model(history,show_shapes=True)


目录
相关文章
|
14天前
|
机器学习/深度学习 边缘计算 算法
SEENN: 迈向时间脉冲早退神经网络——论文阅读
SEENN提出一种时间脉冲早退神经网络,通过自适应调整每个样本的推理时间步数,有效平衡脉冲神经网络的准确率与计算效率。该方法基于置信度判断或强化学习策略,在保证高精度的同时显著降低能耗与延迟,适用于边缘计算与实时处理场景。
58 13
|
10天前
|
机器学习/深度学习 缓存 算法
2025年华为杯A题|通用神经网络处理器下的核内调度问题研究生数学建模|思路、代码、论文|持续更新中....
2025年华为杯A题|通用神经网络处理器下的核内调度问题研究生数学建模|思路、代码、论文|持续更新中....
202 1
|
8月前
|
机器学习/深度学习 编解码 TensorFlow
RT-DETR改进策略【模型轻量化】| 替换骨干网络为EfficientNet v1 高效的移动倒置瓶颈结构
RT-DETR改进策略【模型轻量化】| 替换骨干网络为EfficientNet v1 高效的移动倒置瓶颈结构
401 0
RT-DETR改进策略【模型轻量化】| 替换骨干网络为EfficientNet v1 高效的移动倒置瓶颈结构
|
5月前
|
人工智能 算法 异构计算
阿里云基础网络技术5篇论文入选全球网络顶会NSDI
近日,阿里云基础网络技术5篇论文被NSDI 2025主会录用。研究涵盖大模型训练网络故障诊断、仿真、容器网络性能诊断、CDN流控算法智能选择及GPU解耦推理优化等领域。其中,《Evolution of Aegis》提出增强现有体系+训练过程感知的两阶段演进路线,显著降低故障诊断耗时;《SimAI》实现高精度大模型集群训练模拟;《Learning Production-Optimized Congestion Control Selection》通过AliCCS优化CDN拥塞控制;《Prism》设计全新GPU解耦推理方案;《ScalaCN》解决容器化RDMA场景性能问题。
179 7
阿里云基础网络技术5篇论文入选全球网络顶会NSDI
|
8月前
|
机器学习/深度学习 自动驾驶 计算机视觉
RT-DETR改进策略【模型轻量化】| 替换骨干网络为 GhostNet V1 基于 Ghost Module 和 Ghost Bottlenecks的轻量化网络结构
RT-DETR改进策略【模型轻量化】| 替换骨干网络为 GhostNet V1 基于 Ghost Module 和 Ghost Bottlenecks的轻量化网络结构
331 61
RT-DETR改进策略【模型轻量化】| 替换骨干网络为 GhostNet V1 基于 Ghost Module 和 Ghost Bottlenecks的轻量化网络结构
|
7月前
|
SQL 缓存 Cloud Native
NSDI'24 | 阿里云飞天洛神云网络论文解读——《Poseidon》揭秘新型超高性能云网络控制器
NSDI'24 | 阿里云飞天洛神云网络论文解读——《Poseidon》揭秘新型超高性能云网络控制器
243 63
|
5月前
|
canal 负载均衡 智能网卡
阿里云洛神云网络论文入选SIGCOMM'25主会,相关实习生岗位火热招聘中
阿里云飞天洛神云网络的两项核心技术Nezha和Hermes被SIGCOMM 2025主会录用。Nezha通过计算网络解耦实现vSwitch池化架构,大幅提升网络性能;Hermes则提出用户态引导I/O事件通知框架,优化L7负载均衡。这两项技术突破解决了云网络中的关键问题,展现了阿里云在网络领域的领先实力。
786 2
|
7月前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的【害虫识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
害虫识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了12种常见的害虫种类数据集【"蚂蚁(ants)", "蜜蜂(bees)", "甲虫(beetle)", "毛虫(catterpillar)", "蚯蚓(earthworms)", "蜚蠊(earwig)", "蚱蜢(grasshopper)", "飞蛾(moth)", "鼻涕虫(slug)", "蜗牛(snail)", "黄蜂(wasp)", "象鼻虫(weevil)"】 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Djan
384 1
基于Python深度学习的【害虫识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
|
8月前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的【蘑菇识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
蘑菇识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了9种常见的蘑菇种类数据集【"香菇(Agaricus)", "毒鹅膏菌(Amanita)", "牛肝菌(Boletus)", "网状菌(Cortinarius)", "毒镰孢(Entoloma)", "湿孢菌(Hygrocybe)", "乳菇(Lactarius)", "红菇(Russula)", "松茸(Suillus)"】 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Django框架搭建了一个Web网页平台可视化操作界面,
585 11
基于Python深度学习的【蘑菇识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能

热门文章

最新文章