数据结构—笔记整理—初识数据结构 中

简介: 数据结构—笔记整理—初识数据结构 中

数据结构

数据结构是相互之间存在一种或多种特定关系的数据元素的集合

逻辑结构(分为线性结构和非线性结构)

反映数据元素之间的逻辑关系的数据结构,是针对具体问题的,可以表示成一种或多种存储结构

集合结构(非线性结构)

集合通常是由一组无序的, 不能重复的元素构成 数据结构中的元素之间除了“同属一个集合” 的相互关系外,别无其他关系

线性结构

线性结构是一个有序数据元素的集合,常用的线性结构有:线性表,栈,队列,双队列,数组,串。 非线性结构,其逻辑特征是一个结点元素可能有多个直接前趋和多个直接后继。常见的非线性结构有:二维数组,多维数组,广义表,树(二叉树等)。

线性结构是一个有序数据元素的集合

数组

线性表

0个或多个具有相同类型的数据元素的有限序列

存储结构

顺序存储结构

顺序存储结构,用一段地址连续的存储单元 一次存储线性表的数据元素。比如数组

每个数据元素存数据元素信息外(数据域),还要存储它的后继元素的存储地址(指针域)

优点:

无需为表示表中元素之间的逻辑关系而增加额外的存储空间

可以快速的存取表中任意位置的元素,时间复杂度为O(1)

缺点:

插入和删除操作需要移动大量元素

当线性表变化较大时,难以确定存储空间的容量

造成存储空间的"碎片"

链式存储结构

用一组任意的存储单元存储线性表的数据元素, 这组存储单元可以是连续的,也可以是不连续的

单链表

链表中每个结点可以包含若干个数据域和若干个指针域。 如果每个结点中只包含一个指针域,则称其为单链表。

优点:

单链表不需要分配存储空间,只要有就可以分配,元素个数也不受限制

插入和删除更快,时间复杂度为O(n),在给出某位置的指针后,复杂度仅为O(1)

缺点:

查找效率比顺序存储结构差,时间复杂度为O(n)

静态链表

用数组描述的链表叫静态链表(用数组代替指针)

为了给没有指针的高级语言设计的视线单链表的方法,很少用(虽然java,c#也没有指针,但是引用类型相当于变样实现了指针)

优点: 插入和删除只需要修改游标,无需移动元素 从而改进了在顺序存储结构中的插入,删除移动大量元素的缺点

缺点: 没有解决连续存储分配带来的表长难以确认的问题 失去了顺序存储结构随机存取的特性

循环链表

将单链表中终端结点的指针段由空指针改为指向头结点,就使整个单链表形成一个环,这种头尾相接的单链表就

称为单循环链表,简称循环链表

双向链表

在单链表的每个结点中,再设置一个指向其前驱结点的指针域 (就意味着双向链表的结点都有俩个指针域,一个指向直接后继, 一个指向直接前驱)

栈(特殊的线性表)

限定仅在表尾进行插入和删除操作的线性表,又称后进先出(LIFO)的线性表 (允许插入和删除的一端称为栈顶,另一端称为栈底)

队列(特殊的线性表)

只允许在一端进行插入操作,而另一端进行删除操作的线性表 先进先出(FIFO)

顺序存储结构(顺序队列)

循环队列

链式存储结构(链队列)

串(字符串)

有0个或多个字符组成的有限序列

针对的是字符集,就是说把字符串中多个字符连在一起

存储结构

顺序存储结构

链式存储结构

模式匹配

朴素的描述匹配 (从头开始一个个字符匹配)

效率很低,复杂度为O((n-m+1)*m) n是总的字符串,m是需要匹配的字符串

KMP模式匹配算法

算法证明和更详细的说明,请参阅《算法导论》第2版第32章字符串匹配

KMP模式匹配算法改进

树形结构(非线性结构)

数据元素之间存在一对多的层次关系

数是n(n>=0)个节点的有限集。若n=0,称为空树。树的节点是互不交互的。 + 度:节点拥有的子数(节点)数量称为"度",度为0的称为叶节点。 + 树的度:树的度是树内各节点的度的最大值 + 节点的层次:跟为第一层,一次类推。 + 数的深度:数中节点的最大层次称为"深度"或"高度"

二叉树

特点

每个结点最多有俩棵子树

左右子树是顺序的,次序不能颠倒

即使树中只有一棵子树,也要区分左右

五种形态

空二叉树

只有一个根结点

根结点只有左子树

根结点只有右子树

根结点既有左子树,又有右子树

性质

在二叉树的第i层上之多有2i-1(i-1是上标)个结点

深度为K的二叉树至多有2k-1(k>=1,k是上表)个结点

特殊二叉树

斜树

所有结点都只有左子树的二叉树叫左斜树

所有结点都只有右子树的二叉树叫右斜树

满二叉树

一个二叉树中,所有分支结点都存在左子树和右子树, 并且所有叶子都在同一层上,称为满二叉树

完全二叉树

若设二叉树的深度为h,除第 h 层外,其它各层 (1~h-1) 的结点数都达到最大个数,第 h 层所有的结点都连续集中 在最左边,这就是完全二叉树。

线索二叉树

每个二叉树左右俩个指针域,如果为空,放着也浪费空间。 所以第一次遍历二叉树时,如果左指针域为空就存前驱地址, 右指针域为空就存后继地址。但是左侧需要一个tag来标识左指 针域存的是左孩子结点还是前驱,右侧也同样需要。

存储结构

顺序存储结构

只用于完全二叉树(因为完全二叉树定义的严格, 可以用顺序结构表示出二叉树的结构,很有优越性。详情参考P172) 该结构不太通用,通用的见二叉链表

二叉链表

二叉树每个结点最多有俩个孩子,所以可以用 一个数据域+俩个指针域这样的结构存储二叉树

相关文章
|
8月前
|
算法 搜索推荐 Java
数据结构与算法(Java篇)笔记--希尔排序
数据结构与算法(Java篇)笔记--希尔排序
|
7月前
|
存储 算法
【单向链表】数据结构——单向链表的介绍与代码实现&笔记
【单向链表】数据结构——单向链表的介绍与代码实现&笔记
|
7月前
|
存储 算法
【树】数据结构——树和二叉树的概念&笔记
【树】数据结构——树和二叉树的概念&笔记
|
7月前
|
算法 Java 索引
12.12_黑马数据结构与算法笔记Java
12.12_黑马数据结构与算法笔记Java
56 1
|
6月前
|
存储 算法 C语言
软考中级之数据库系统工程师笔记总结(二)数据结构与算法
软考中级之数据库系统工程师笔记总结(二)数据结构与算法
45 0
|
7月前
|
存储 算法 Linux
【内核链表】数据结构——深入理解内核链表的概念和操作&笔记
【内核链表】数据结构——深入理解内核链表的概念和操作&笔记
【循环链表】数据结构——单向循环链表和双向循环链表操作&笔记
【循环链表】数据结构——单向循环链表和双向循环链表操作&笔记
【数据结构】做题笔记--区间反转链表
【数据结构】做题笔记--区间反转链表
|
8月前
|
存储 机器学习/深度学习 人工智能
【软件设计师—基础精讲笔记8】第八章 数据结构
【软件设计师—基础精讲笔记8】第八章 数据结构
95 0
|
8月前
|
算法 搜索推荐 Java
数据结构与算法(Java篇)笔记--快速排序
数据结构与算法(Java篇)笔记--快速排序