Python 蓝桥杯之拓扑排序 检测环

简介: Python 蓝桥杯之拓扑排序 检测环

距离蓝桥杯52天


学习算法的目的是为了提升我们的编码能力


付出总有回报 不付出一定没有回报


了解拓扑排序之前,先了解AOV网:


4b631a9d00d22a573af523dabbcd48ca.gif


2999c4b1e173409082d7e9ba681e298c.png


在有向图中若以顶点表示活动,有向边表示活动之间的先后关系,这样的图简称为AOV网


比如C1指向C4,说明C4活动的开展以C1的开展为前提(C1没完成就不能去弄C4)


知道了AOV网图,就可以引入拓扑序列的概念:


拓扑序列:拓扑序列是顶点活动网(AOV网)中将活动按发生的先后次序进行的一种排列


这么说有点抽象,传送门:某站上视频对这个讲解的很好


值得一提的是:任何一个有向无环图一定有拓扑序列,因此拓扑序列可以用来检测环


拓扑排序之前,先了解有向图的三个基本概念:入度,出度,度


入度:指向该顶点的入边 出度:从该顶点指出的边    度:入度和出度的总和(与顶点相关联的边的条数)


从图上来看,拓扑排序需要这么做(视频里也有详细的分析过程,建议去看,强烈建议):


f22b87faee8e431ab2af0bdde064c2ed.png


那么对于代码来说,我们需要运用深搜的思想来执行拓扑排序的操作,1:找到图中入度为0的顶点 压栈 2:处于栈顶的顶点出栈 并加入列表(另外创建的存储结构,用于存储拓扑序列中的元素) 访问该顶点的所有邻居,如果其存在入度为0的邻居,压栈,执行操作2,如果不存在,回溯。


下面以上图为例,将C1,C2...C7依次对应为字母abcdefg,给出创建拓扑序列的代码:


#准备工作上需要一个字典:用于存放连接关系
def topsort(graph):
    #初始化所有点的入度为0
    indegrees=dict((i,0) for i in graph.keys())
    #传入入度大小
    for i in graph.keys():
        for j in graph[i]:
            indegrees[j]+=1#'a':'cd',代表a指向c和d,那么c和d的入度增加1
    #获取入度为0的顶点
    stack=[i for i in indegrees.keys() if indegrees[i]==0]
    #创建拓扑序列
    seq=[]
    while stack:#深搜
        tmp=stack.pop()#出栈
        seq.append(tmp)#加入拓扑序列
        for k in graph[tmp]:#遍历邻居,邻居入度-1,邻居入度为0入栈
            indegrees[k]-=1
            if indegrees[k]==0:
                stack.append(k)
    if len(seq)==len(graph):
        print(seq)#输出拓扑序列
    else:
        print('存在环')#当存在环,最终余下的点入度都不为0,Seq个数少于总顶点数
G={
    'a':'cd',
    'b':'df',
    'c':'e',
    'd':'efg',
    'e':'g',
    'f':'g',
    'g':''
}
topsort(G)
#['b', 'a', 'd', 'f', 'c', 'e', 'g']

014e9cf06383474cb185376bf655c370.png

12892db0f8114a6f80ffe02b45c644c6.png

第一次没优化只有71分,优化了第二次是85。(这最后一个如有大佬知道怎么过的请教一下)


6e81d92208ef4b869feda03b554d1c63.png


代码设计思路:找能够组成圈的所有点,根据这些点找到最大环。


首先解决如何计算圈的大小问题:比如A结点经过一系列结点最后回到了A结点,我们要知道圈的大小,只需要知道这一过程中A走过了几个不同的结点,换句话说,这个圈内有几个元素(集合的思想)。然后比较各个圈的大小即可知道最大环。


这里有一点需要强调:虽然我们可以通过遍历每个点(能够组成圈的点),枚举出所有圈大小的情况,但是会有重复,当数据大起来,就会超时(71)。那怎么样才能避免重复呢,思考,比如题目给出的实例,2,3,4,5组成一个圈,假设我在遍历结点2的时候,计算出了这个圈的大小是4,那么圈内的结点,在下一次访问都不需要再访问了,也就是说下一次可以直接访问结点6。


原因:问题就在于圈内的结点有没有可能与其他结点组成更大的圈,如果我们不再访问,会不会导致范围缩小或者遗漏?答案是不会的。因为,如果要组成更大的圈,圈内的结点必然要与圈外的结点连接。由于圈内的结点是作为圈的一部分,那么必定已经有一条边指向这个结点。如果存在这个结点与圈外的结点构成更大的圈,那么必然与圈外的结点有连接,那么这个结点就会同时指向两个结点,就不符合题意了。


#准备工作上需要一个字典:用于存放连接关系
def topsort(graph):
    #初始化所有点的入度为0
    indegrees=dict((i,0) for i in graph.keys())
    #传入入度大小
    for i in graph.keys():
        indegrees[graph[i]]+=1
    #获取入度为0的顶点
    stack=[i for i in indegrees.keys() if indegrees[i]==0]
    #创建拓扑序列
    seq=[]
    while stack:#深搜
        tmp=stack.pop()#出栈
        seq.append(tmp)#加入拓扑序列
        for k in graph[tmp]:#遍历邻居,邻居入度-1,邻居入度为0入栈
            indegrees[k]-=1
            if indegrees[k]==0:
                stack.append(k)
    if len(seq)==len(graph):
        print(seq)#对于本题而言一定有圈
    else:
        ans=0#最大圈的大小
        res=[i for i in indegrees if indegrees[i]!=0]#环上的点
        found=[]#用于减少次数:已查找过的点
        for j in res:#寻找最大环
            if j not in found:
                start=j
                p=set()
                while G[j]!=start:
                    found.append(j)
                    p.update([int(j)])
                    j=G[j]
                found.append(j)
                p.update([int(j)])
                ans=max(ans,len(p))
        print(ans)
n=int(input().strip())
m=list(map(int,input().strip().split()))
G={}
for i in enumerate(m):
    G[str(i[0]+1)]=str(i[1])
topsort(G)

我是小郑 正在奔赴热爱奔赴山海!

相关文章
|
1月前
|
Python
蓝桥杯练习题(一):Python组之入门训练题
这篇文章是关于蓝桥杯Python组的入门训练题,包括Fibonacci数列、圆的面积、序列求和和A+B问题的具体代码实现和样例输出。
130 0
|
1月前
|
机器学习/深度学习 TensorFlow 算法框架/工具
使用Python实现深度学习模型:智能质量检测与控制
使用Python实现深度学习模型:智能质量检测与控制 【10月更文挑战第8天】
179 62
使用Python实现深度学习模型:智能质量检测与控制
|
17天前
|
搜索推荐 Python
快速排序的 Python 实践:从原理到优化,打造你的排序利器!
本文介绍了 Python 中的快速排序算法,从基本原理、实现代码到优化方法进行了详细探讨。快速排序采用分治策略,通过选择基准元素将数组分为两部分,递归排序。文章还对比了快速排序与冒泡排序的性能,展示了优化前后快速排序的差异。通过这些分析,帮助读者理解快速排序的优势及优化的重要性,从而在实际应用中选择合适的排序算法和优化策略,提升程序性能。
29 1
|
1月前
|
存储 机器学习/深度学习 算法
蓝桥杯练习题(三):Python组之算法训练提高综合五十题
蓝桥杯Python编程练习题的集合,涵盖了从基础到提高的多个算法题目及其解答。
63 3
蓝桥杯练习题(三):Python组之算法训练提高综合五十题
|
21天前
|
机器学习/深度学习 PyTorch TensorFlow
使用Python实现智能食品质量检测的深度学习模型
使用Python实现智能食品质量检测的深度学习模型
70 1
|
1月前
|
人工智能 Python
蓝桥杯练习题(四):Python组之历届试题三十题
关于蓝桥杯Python组历届试题的三十个练习题的总结,包括题目描述、输入输出格式、样例输入输出以及部分题目的解题思路和代码实现。
32 0
蓝桥杯练习题(四):Python组之历届试题三十题
|
1月前
|
算法
蓝桥杯宝藏排序 | 数据结构 | 快速排序 归并排序
蓝桥杯宝藏排序 | 数据结构 | 快速排序 归并排序
|
1月前
|
人工智能 算法
蓝桥杯真题宝藏排序详解 | 冒泡排序 选择排序 插入排序
蓝桥杯真题宝藏排序详解 | 冒泡排序 选择排序 插入排序
|
2月前
|
Docker Python 容器
python检测docker compose文件是否正确
python检测docker compose文件是否正确
|
2月前
|
机器学习/深度学习 数据采集 网络安全
使用Python实现深度学习模型:智能网络安全威胁检测
使用Python实现深度学习模型:智能网络安全威胁检测
232 5
下一篇
无影云桌面