Nervana 开源深度学习软件,性能超 Facebook、Nvidia产品

简介:


383e86a4836202793cc20562d501526397e7378f

Nervana System是少数专注机器学习这种人工智能技术的创业公司该公司,近日宣布将其深度学习软件在Apache开源许可协议下开源(github),任何人都可以免费下载使用。

根据Facebook一位研究者的基准测试,Nervana的软件比业界知名的深度学习工具性能都要高,包括Facebook自己的Torch7和Nvidia的cuDNN。

深度学习时人工智能技术的热门领域,目前谷歌、微软和百度等互联网巨头在深度学习也都投入重金研发。而不少深度学习创业公司也都遭巨头们纷纷抢购,例如Madbits(Twitter)、DeepMind(谷歌)和AlchemyAPI(IBM)。目前尚未被收购的深度学习创业公司包括Teradeep、Enlitic、Ersatz Labs、Clarifai、MetaMind和Skymind(为APP开发者提供开源的深度学习库DeepLearning4j)。

此外,Netflix、Pandora、SPotify甚至Snapchat等坐拥用户大数据的公司也都在纷纷试水深度学习。

文章转载自 开源中国社区 [http://www.oschina.net]

目录
打赏
0
0
0
0
159
分享
相关文章
深度学习实践技巧:提升模型性能的详尽指南
深度学习模型在图像分类、自然语言处理、时间序列分析等多个领域都表现出了卓越的性能,但在实际应用中,为了使模型达到最佳效果,常规的标准流程往往不足。本文提供了多种深度学习实践技巧,包括数据预处理、模型设计优化、训练策略和评价与调参等方面的详细操作和代码示例,希望能够为应用实战提供有效的指导和支持。
深度学习用于求解车间调度问题,性能如何呢?
基于深度学习来求解车间调度问题,不仅求解速度快,求解的质量也越来越好
97 24
深度学习中的注意力机制:提升模型性能的关键
在深度学习的世界里,注意力机制如同一位精明的侦探,专注于细节之中发现线索。不同于传统方法的全局视角,它通过聚焦于输入数据的关键部分来提升模型性能。本文将带你领略注意力机制的魅力,从其工作原理到在各领域的应用实例,一探究竟如何让深度学习模型更“专注”。
深度学习中的正则化技术及其对模型性能的影响
【8月更文挑战第26天】本文将深入探讨深度学习领域中的正则化技术,并分析其如何塑造模型性能。我们将从理论出发,逐步引导读者理解不同正则化方法背后的原理,并通过实例展示它们在实际问题中的应用效果。文章旨在启发读者思考如何在特定的深度学习任务中选择合适的正则化策略,以优化模型的表现。
深度学习中的正则化技术及其对模型性能的影响
本文深入探讨了深度学习领域中正则化技术的重要性,通过分析L1、L2以及Dropout等常见正则化方法,揭示了它们如何帮助防止过拟合,提升模型的泛化能力。文章还讨论了正则化在不同类型的神经网络中的应用,并指出了选择合适正则化策略的关键因素。通过实例和代码片段,本文旨在为读者提供关于如何在实际问题中有效应用正则化技术的深刻见解。
提升深度学习性能的利器—全面解析PAI-TorchAcc的优化技术与应用场景
在当今深度学习的快速发展中,模型训练和推理的效率变得尤为重要。为了应对计算需求不断增长的挑战,AI加速引擎应运而生。其中,PAI-TorchAcc作为一个新兴的加速引擎,旨在提升PyTorch框架下的计算性能。本文将详细介绍PAI-TorchAcc的基本概念、主要特性,并通过代码实例展示其性能优势。
18249 166
深度学习之测量GPU性能的方式
在深度学习中,测量GPU性能是一个多方面的任务,涉及运行时间、吞吐量、GPU利用率、内存使用情况、计算能力、端到端性能测试、显存带宽、框架自带性能工具和基准测试工具等多种方法。通过综合使用这些方法,可以全面评估和优化GPU的性能,提升深度学习任务的效率和效果。
418 5
探索深度学习中的优化器选择对模型性能的影响
在深度学习领域,优化器的选择对于模型训练的效果具有决定性作用。本文通过对比分析不同优化器的工作原理及其在实际应用中的表现,探讨了如何根据具体任务选择合适的优化器以提高模型性能。文章首先概述了几种常见的优化算法,包括梯度下降法、随机梯度下降法(SGD)、动量法、AdaGrad、RMSProp和Adam等;然后,通过实验验证了这些优化器在不同数据集上训练神经网络时的效率与准确性差异;最后,提出了一些基于经验的规则帮助开发者更好地做出选择。
在Pytorch中为不同层设置不同学习率来提升性能,优化深度学习模型
在深度学习中,学习率作为关键超参数对模型收敛速度和性能至关重要。传统方法采用统一学习率,但研究表明为不同层设置差异化学习率能显著提升性能。本文探讨了这一策略的理论基础及PyTorch实现方法,包括模型定义、参数分组、优化器配置及训练流程。通过示例展示了如何为ResNet18设置不同层的学习率,并介绍了渐进式解冻和层适应学习率等高级技巧,帮助研究者更好地优化模型训练。
568 4
在Pytorch中为不同层设置不同学习率来提升性能,优化深度学习模型