JAVA中生成随机数Random VS ThreadLocalRandom性能比较

简介: JAVA中生成随机数Random VS ThreadLocalRandom性能比较

前言


大家项目中如果有生成随机数的需求,我想大多都会选择使用Random来实现,它内部使用了CAS来实现。 实际上,JDK1.7之后,提供了另外一个生成随机数的类ThreadLocalRandom,那么他们二者之间的性能是怎么样的呢?


Random的使用


Random类是JDK提供的生成随机数的类, 这个类不是随机的,而是伪随机的。什么是伪随机呢? 伪随机是指生成的随机数是有一定规律的,这个规律出现的周期因伪随机算法的优劣而异。 一般来说,周期比较长,但可以预见。 我们可以通过以下代码简单地使用 Random:

1671204032016.jpg

Random中有很多方法。 这里我们就分析比较常见的nextInt()nextInt(int bound)方法。

  • nextInt()会计算int范围内的随机数,
  • nextInt(int bound)会计算[0,bound) 之间的随机数,左闭右开。


实现原理


Random类的构造函数如下图所示:

1671204040959.jpg

  • 可以看到在构造方法中,根据当前时间seed生成了一个AtomicLong类型的seed
public int nextInt() {
    return next(32);
}
  • 这里面直接调用了next()方法,传入了32,这里的32是指Int的位数。
protected int next(int bits) {
    long oldseed, nextseed;
    AtomicLong seed = this.seed;
    do {
        oldseed = seed.get();
        nextseed = (oldseed * multiplier + addend) & mask;
    } while (!seed.compareAndSet(oldseed, nextseed));
    return (int)(nextseed >>> (48 - bits));
}
  • 这里会根据seed的当前值,通过一定的规则(伪随机)计算出下一个seed,然后进行CAS。 如果CAS失败,继续循环上述操作。 最后根据我们需要的位数返回。

小结:可以看出在next(int bits)方法中,对AtomicLong进行了CAS操作,如果失败则循环重试。 很多人一看到CAS,因为不需要加锁,第一时间就想到了高性能、高并发。 但是在这里,却成为了我们多线程并发性能的瓶颈。 可以想象,当我们有多个线程执行CAS时,只有一个线程一定会失败,其他的会继续循环执行CAS操作。 当并发线程较多时,性能就会下降。


ThreadLocalRandom的使用


JDK1.7之后,提供了一个新类ThreadLocalRandom来替代Random

1671204054174.jpg


实现原理


我们先来看下current()方法。

public static ThreadLocalRandom current() {
    if (UNSAFE.getInt(Thread.currentThread(), PROBE) == 0)
        localInit();
    return instance;
}
static final void localInit() {
    int p = probeGenerator.addAndGet(PROBE_INCREMENT);
    int probe = (p == 0) ? 1 : p; // skip 0
    long seed = mix64(seeder.getAndAdd(SEEDER_INCREMENT));
    Thread t = Thread.currentThread();
    UNSAFE.putLong(t, SEED, seed);
    UNSAFE.putInt(t, PROBE, probe);
}
  • 如果没有初始化,先进行初始化,这里我们的seed不再是全局变量了。 我们的线程中有三个变量:
/** The current seed for a ThreadLocalRandom */
@sun.misc.Contended("tlr")
long threadLocalRandomSeed;
/** Probe hash value; nonzero if threadLocalRandomSeed initialized */
@sun.misc.Contended("tlr")
int threadLocalRandomProbe;
/** Secondary seed isolated from public ThreadLocalRandom sequence */
@sun.misc.Contended("tlr")
int threadLocalRandomSecondarySeed;
  • threadLocalRandomSeed:这是我们用来控制随机数的种子。
  • threadLocalRandomProbe:这个就是ThreadLocalRandom,用来控制初始化。
  • threadLocalRandomSecondarySeed:这是二级种子。

关键代码如下:

UNSAFE.putLong(t = Thread.currentThread(), SEED,r=UNSAFE.getLong(t, SEED) + GAMMA);

可以看出,由于每个线程都维护自己的seed,所以此时不需要CAS,直接进行put。 这里通过线程间的隔离来减少并发冲突,所以ThreadLocalRandom的性能非常高。


性能对比


通过基准工具JMH测试:

@BenchmarkMode({Mode.AverageTime})
@OutputTimeUnit(TimeUnit.NANOSECONDS)
@Warmup(iterations=3, time = 5, timeUnit = TimeUnit.SECONDS)
@Measurement(iterations=3,time = 5)
@Threads(4)
@Fork(1)
@State(Scope.Benchmark)
public class Myclass {
   Random random = new Random();
   ThreadLocalRandom threadLocalRandom = ThreadLocalRandom.current();
   @Benchmark
   public int measureRandom(){
       return random.nextInt();
   }
   @Benchmark
   public int threadLocalmeasureRandom(){
       return threadLocalRandom.nextInt();
   }
}

运行结果如下图所示,最左边是并发线程的数量:

1671204071480.jpg

1671204076229.jpg

显而易见,无论线程数量是多少,ThreadLocalRandom性能是远高于Random


总结


本文讲解了JDK中提供的两种生成随机数的方式,一个是JDK 1.0引入的Random类,另外一个是JDK1.7引入的ThreadLocalRandom类,由于底层的实现机制不同,ThreadLocalRandom的性能是远高于Random,建议后面大家在技术选型的时候优先使用ThreadLocalRandom

目录
相关文章
|
4月前
|
缓存 算法 Java
Java 实现的局域网管控软件的性能调优
局域网管控软件在企业网络管理中至关重要,但随着网络规模扩大和功能需求增加,其性能可能受影响。文章分析了数据处理效率低下、网络通信延迟和资源占用过高等性能瓶颈,并提出了使用缓存、优化算法、NIO库及合理管理线程池等调优措施,最终通过性能测试验证了优化效果,显著提升了软件性能。
57 1
|
3月前
|
XML Java 数据库连接
性能提升秘籍:如何高效使用Java连接池管理数据库连接
在Java应用中,数据库连接管理至关重要。随着访问量增加,频繁创建和关闭连接会影响性能。为此,Java连接池技术应运而生,如HikariCP。本文通过代码示例介绍如何引入HikariCP依赖、配置连接池参数及使用连接池高效管理数据库连接,提升系统性能。
89 5
|
4月前
|
存储 缓存 安全
HashMap VS TreeMap:谁才是Java Map界的王者?
HashMap VS TreeMap:谁才是Java Map界的王者?
185 2
|
4月前
|
数据采集 缓存 Java
Python vs Java:爬虫任务中的效率比较
Python vs Java:爬虫任务中的效率比较
|
12天前
|
Java API 数据安全/隐私保护
探索Java动态代理的奥秘:JDK vs CGLIB
动态代理是一种在 运行时动态生成代理类的技术,无需手动编写代理类代码。它通过拦截目标方法的调用,实现对核心逻辑的 无侵入式增强(如日志、事务、权限控制等)。
43 0
探索Java动态代理的奥秘:JDK vs CGLIB
|
2月前
|
存储 缓存 Oracle
Java线程池,白话文vs八股文,原来是这么回事!
本文介绍了Java线程池的原理、实现方式及相关参数。首先,通过类比公司员工的方式解释了线程池的核心概念,如核心线程、最大线程数、任务队列和拒绝策略。接着,详细描述了线程池的任务处理流程,并提供了使用`ThreadPoolExecutor`和`Executors`创建线程池的代码示例,强调了`ThreadPoolExecutor`的灵活性和`Executors`的局限性。最后,总结了线程池的相关参数及不同类型的线程池实现,并附带常见面试题及其解答,帮助读者全面理解线程池的应用场景和优化方法。
56 4
|
3月前
|
Java 数据库连接 数据库
优化之路:Java连接池技术助力数据库性能飞跃
在Java应用开发中,数据库操作常成为性能瓶颈。频繁的数据库连接建立和断开增加了系统开销,导致性能下降。本文通过问题解答形式,深入探讨Java连接池技术如何通过复用数据库连接,显著减少连接开销,提升系统性能。文章详细介绍了连接池的优势、选择标准、使用方法及优化策略,帮助开发者实现数据库性能的飞跃。
52 4
|
3月前
|
Java 数据库连接 数据库
深入探讨Java连接池技术如何通过复用数据库连接、减少连接建立和断开的开销,从而显著提升系统性能
在Java应用开发中,数据库操作常成为性能瓶颈。本文通过问题解答形式,深入探讨Java连接池技术如何通过复用数据库连接、减少连接建立和断开的开销,从而显著提升系统性能。文章介绍了连接池的优势、选择和使用方法,以及优化配置的技巧。
79 1
|
4月前
|
存储 缓存 算法
提高 Java 数组性能的方法
【10月更文挑战第19天】深入探讨了提高 Java 数组性能的多种方法。通过合理运用这些策略,我们可以在处理数组时获得更好的性能表现,提升程序的运行效率。
61 2
|
4月前
|
安全 Java 程序员
Java集合之战:ArrayList vs LinkedList,谁才是你的最佳选择?
本文介绍了 Java 中常用的两个集合类 ArrayList 和 LinkedList,分析了它们的底层实现、特点及适用场景。ArrayList 基于数组,适合频繁查询;LinkedList 基于链表,适合频繁增删。文章还讨论了如何实现线程安全,推荐使用 CopyOnWriteArrayList 来提升性能。希望帮助读者选择合适的数据结构,写出更高效的代码。
176 3