二级倒立摆系统的稳定控制与仿真(Matlab/Simulink)

简介: 二级倒立摆系统的稳定控制与仿真(Matlab/Simulink)

b13ca2c808764dcd8cfdd71ee657afa9.png67c0b7972a4c4ab780201c58d3639f7e.png


利用拉格朗日方程推导运动学方程

拉格朗日方程为:


eb25f69c7a6f4cfc8f02f18994e262b9.png


其中L为拉格朗日算子,q为系统的广义坐标,T为系统的动能,V为系统的势能。


bb029c2d35224484959d1a09ba477723.png


其中f_1为系统在第i个广义坐标上的外力,在二级倒立摆系统中,系统有三个广义坐标,分别为x,θ_1,θ_2。


首先计算系统的动能:

T=T_M+T_m1+T_m2+T_m3

其中T_M,T_m1,T_m2,T_m3分别为小车的动能,摆杆1的动能,摆杆2的动能和质量块的动能。


小车的动能:


5eec1f30308f490e8393f59226d6a729.png


对于系统,设以下变量:

Xpend1摆杆1质心横坐标

Xpend2摆杆2质心横坐标

Yangle1摆杆1质心纵坐标

Yangle2摆杆2质心纵坐标

Xmass 质量块质心横坐标

Ymass 质量块质心横坐标

又有:


f861511b443444f9b9f88513c91f35b4.png


则有:


9cf0b15f07b94b3e9f26dbe8d3cc57cc.png


系统总动能:

T=T_M+T_m1+T_m2+T_m3

系统总势能:

V=V_m1+V_m2+V_m3=m_1 ypend1+m_2 ypend2+m_3 ymass

则有:

V=m_1 l_1 cosθ_1+m_2 (2l_1 cosθ_1+l_2 cosθ_2)+2m_3 l_1 cosθ_1

求解状态方程:


633cd7ca9f32480284d986099a3f8237.png


可解得:


859808855e724fffb1de64ae5c1ea38d.png


使用matlab进行编程,A=[0 0 0 1 0 0;0 0 0 0 1 0;

0 0 0 0 0 1;

0 0 0 0 0 0;

0 86.69 -21.62 0 0 0;

0 -40.31 39.45 0 0 0];

B=[0;0;0;1;6.64;-0.088];

C=[ 1 0 0 0 0 0;

0 1 0 0 0 0;

0 0 1 0 0 0;

];

D=[0;0;0];

M=ss(A,B,C,D);

t=0:0.001:5;

step(M,t);

得到图线为:


53b8e9fb5a324c0482284cb351a40423.png


由图像可知,系统小车位置、摆杆A角度和摆杆二角度发散,需要增设控制器。


二、直线二级倒立摆使用极点配置方法控制

二级倒立摆系统是一个不稳定的系统。设计控制器的目的是使倒立摆系统动态稳定,即使小车在外力作用下其位移以较小的误差跟随输入的变化。由于系统的动态响应主要是由他的极点位置决定的 ,同时容易证明二级倒立摆系统是一个能控而且能观的系统。因此本文通过极点配置状态反馈控制器来使系统保持稳定。建立simulink模型,如图所示:


e49467cf0bbd46be9d1fe41a7652ca6b.png


首先设配置的极点为-2+i2√3,-2-i2√3,-10,-10,-10,-10的矩阵


bb9f7516f4374a9da9e476cd1a951b54.png


并求出对应的特征方程,再利用A,B计算出能控标准型M,由特征方程和A计算出特征值,然后利用matlab编辑器使用函数计算出K值(公式:K=[0 0 0 0 0 1]*(inv(M))*Phi),[ 62.7840 122.6947 -280.2655 40.8096 -0.1389 -46.7317].

显示波形图:


b73929c1c4e242be8f293f47706458b6.png


然后增设扰动,simulink仿真模型如图:


扰动数据如下图所示:每4 S突加一个值为1的脉冲,持续时间为2 S,


5a1ce18d33fb47dc81ecec7cfb6ae9f8.png


显示波形如下图,在脉冲初次来到之前,系统正常运行,而当脉冲到来时,系统出现微弱波动,然后进行反馈调节,逐渐稳定,持续2 S,然后周期进行。


3dc0b59a676347e28cb41548bd55c57e.png


三、心得体会

本文以二级倒立摆为研究对象 ,讨论了将极点配置 在期望的区域内的状态反馈控制方法。从结果可以看出 ,该方法可以保证系统具有一定的动态和稳态性能 ,不仅满足闭环系统的内部动态特性要求 , 也兼顾了抑制外部扰动对系统的影响。由此可知 , 极点配置控制方法可以实现二级摆的倒立平衡控制。


相关文章
|
5天前
|
算法 数据安全/隐私保护
基于AutoEncode自编码器的端到端无线通信系统matlab误码率仿真
本项目基于MATLAB 2022a实现自编码器在无线通信系统中的应用,仿真结果无水印。自编码器由编码器和解码器组成,通过最小化重构误差(如MSE)进行训练,采用Adam等优化算法。核心程序包括训练、编码、解码及误码率计算,并通过端到端训练提升系统性能,适应复杂无线环境。
102 65
|
4天前
|
算法
基于排队理论的客户结账等待时间MATLAB模拟仿真
本程序基于排队理论,使用MATLAB2022A模拟客户结账等待时间,分析平均队长、等待时长、不能结账概率、损失顾客数等关键指标。核心算法采用泊松分布和指数分布模型,研究顾客到达和服务过程对系统性能的影响,适用于银行、超市等多个领域。通过仿真,优化服务效率,减少顾客等待时间。
|
2天前
|
算法
基于小波变换和峰值搜索的光谱检测matlab仿真,带GUI界面
本程序基于小波变换和峰值搜索技术,实现光谱检测的MATLAB仿真,带有GUI界面。它能够对CO2、SO2、CO和CH4四种成分的比例进行分析和提取。程序在MATLAB 2022A版本下运行,通过小波分解、特征提取和峰值检测等步骤,有效识别光谱中的关键特征点。核心代码展示了光谱数据的处理流程,包括绘制原始光谱、导数光谱及标注峰值位置,并保存结果。该方法结合了小波变换的时频分析能力和峰值检测的敏锐性,适用于复杂信号的非平稳特性分析。
|
3天前
|
算法
基于SOA海鸥优化算法的三维曲面最高点搜索matlab仿真
本程序基于海鸥优化算法(SOA)进行三维曲面最高点搜索的MATLAB仿真,输出收敛曲线和搜索结果。使用MATLAB2022A版本运行,核心代码实现种群初始化、适应度计算、交叉变异等操作。SOA模拟海鸥觅食行为,通过搜索飞行、跟随飞行和掠食飞行三种策略高效探索解空间,找到全局最优解。
|
1天前
|
传感器 算法
基于GA遗传算法的多机无源定位系统GDOP优化matlab仿真
本项目基于遗传算法(GA)优化多机无源定位系统的GDOP,使用MATLAB2022A进行仿真。通过遗传算法的选择、交叉和变异操作,迭代优化传感器配置,最小化GDOP值,提高定位精度。仿真输出包括GDOP优化结果、遗传算法收敛曲线及三维空间坐标点分布图。核心程序实现了染色体编码、适应度评估、遗传操作等关键步骤,最终展示优化后的传感器布局及其性能。
|
3天前
|
算法 数据可视化 数据安全/隐私保护
一级倒立摆平衡控制系统MATLAB仿真,可显示倒立摆平衡动画,对比极点配置,线性二次型,PID,PI及PD五种算法
本课题基于MATLAB对一级倒立摆控制系统进行升级仿真,增加了PI、PD控制器,并对比了极点配置、线性二次型、PID、PI及PD五种算法的控制效果。通过GUI界面显示倒立摆动画和控制输出曲线,展示了不同控制器在偏转角和小车位移变化上的性能差异。理论部分介绍了倒立摆系统的力学模型,包括小车和杆的动力学方程。核心程序实现了不同控制算法的选择与仿真结果的可视化。
31 15
|
1天前
|
监控 算法 数据安全/隐私保护
基于扩频解扩+turbo译码的QPSK图传通信系统matlab误码率仿真,扩频参数可设置
本项目基于MATLAB 2022a实现图像传输通信系统的仿真,涵盖QPSK调制解调、扩频技术和Turbo译码。系统适用于无人机图像传输等高要求场景,确保图像质量和传输稳定性。通过仿真,验证了系统在不同信噪比下的性能,展示了图像的接收与恢复效果。核心代码实现了二进制数据到RGB图像的转换与显示,并保存不同条件下的结果。
16 6
|
2天前
|
机器学习/深度学习 算法 安全
基于深度学习的路面裂缝检测算法matlab仿真
本项目基于YOLOv2算法实现高效的路面裂缝检测,使用Matlab 2022a开发。完整程序运行效果无水印,核心代码配有详细中文注释及操作视频。通过深度学习技术,将目标检测转化为回归问题,直接预测裂缝位置和类别,大幅提升检测效率与准确性。适用于实时检测任务,确保道路安全维护。 简介涵盖了算法理论、数据集准备、网络训练及检测过程,采用Darknet-19卷积神经网络结构,结合随机梯度下降算法进行训练。
|
5天前
|
机器学习/深度学习 数据采集 算法
基于GWO灰狼优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a,展示了时间序列预测算法的运行效果(无水印)。核心程序包含详细中文注释和操作视频。算法采用CNN-GRU-SAM网络,结合灰狼优化(GWO),通过卷积层提取局部特征、GRU处理长期依赖、自注意力机制捕捉全局特征,最终实现复杂非线性时间序列的高效预测。
|
6月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
272 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码

热门文章

最新文章