Verilog学习笔记(中)

简介: Verilog学习笔记

2.2 常量、变量、赋值


a.基本语法

Verilog 是区分大小写的。

格式自由,可以在一行内编写,也可跨多行编写。

每个语句必须以分号为结束符。空白符(换行、制表、空格)都没有实际的意义,在编译阶段可忽略。例如下面两中编程方式都是等效的。

不换行(不推荐)

wire [1:0]  results ;assign results = (a == 1'b0) ? 2'b01 : (b==1'b0) ? 2'b10 : 2'b11


换行(推荐)

wire [1:0]  results ;
assign      results = (a == 1'b0) ? 2'b01 :
            (b==1'b0) ? 2'b10 :
                2'b11 ;


注释

Verilog 中有 2 种注释方式:


用 // 进行单行注释:

reg [3:0] counter ;  // A definition of counter register


用 /* 与 */ 进行跨行注释:

wire [11:0]  addr ;
/* 
Next are notes with multiple lines.
Codes here cannot be compiled.
*/
assign   addr = 12'b0 ;


标识符与关键字

标识符(identifier)可以是任意一组字母、数字、$ 符号和 _(下划线)符号的合,但标识符的第一个字符必须是字母或者下划线,不能以数字或者美元符开始。

另外,标识符是区分大小写的。

关键字是 Verilog 中预留的用于定义语言结构的特殊标识符。

Verilog 中关键字全部为小写。

reg [3:0] counter ; //reg 为关键字, counter 为标识符
input clk; //input 为关键字,clk 为标识符
input CLK; //CLK 与 clk是 2 个不同的标识符


b.verilog 数值表示

数值种类

Verilog HDL 有下列四种基本的值来表示硬件电路中的电平逻辑:

0:逻辑 0 或 "假"
1:逻辑 1 或 "真"
x 或 X:未知
z 或 Z:高阻


x 意味着信号数值的不确定,即在实际电路里,信号可能为 1,也可能为 0。


z 意味着信号处于高阻状态,常见于信号(input, reg)没有驱动时的逻辑结果。例如一个 pad 的 input 呈现高阻状态时,其逻辑值和上下拉的状态有关系。上拉则逻辑值为 1,下拉则为 0 。


整数数值表示方法

数字声明时,合法的基数格式有 4 中,包括:十进制('d 或 'D),十六进制('h 或 'H),二进制('b 或 'B),八进制('o 或 'O)。数值可指明位宽,也可不指明位宽。

指明位宽:

4'b1011         // 4bit 数值
32'h3022_c0de   // 32bit 的数值


其中,下划线 _ 是为了增强代码的可读性。

不指明位宽:

一般直接写数字时,默认为十进制表示,例如下面的 3 种写法是等效的:

counter = 'd100 ;  //一般会根据编译器自动分频位宽,常见的为32bit
counter = 100 ;
counter = 32'h64 ;


负数表示


通常在表示位宽的数字前面加一个减号来表示负数。例如:

-6'd15  
-15


-15 在 5 位二进制中的形式为 5’b10001, 在 6 位二进制中的形式为 6’b11_0001。(不知道怎么推出来的)


需要注意的是,减号放在基数和数字之间是非法的,例如下面的表示方法是错误的:

4'd-2 //非法说明


实数表示方法

实数表示方法主要有两种方式:


十进制:

30.123
6.0
3.0
0.001


科学计数法:

1.2e4         //大小为12000
1_0001e4      //大小为100010000
1E-3          //大小为0.001


字符串表示方法

字符串是由双引号包起来的字符队列。字符串不能多行书写,即字符串中不能包含回车符。Verilog 将字符串当做一系列的单字节 ASCII 字符队列。例如,为存储字符串 “www.runoob.com”, 需要 14*8bit 的存储单元。例如:

reg [0: 14*8-1]       str ;
initial begin
    str = "www.runoob.com";
end


c.verilog数据类型

Verilog 最常用的 2 种数据类型就是线网(wire)与寄存器(reg),其余类型可以理解为这两种数据类型的扩展或辅助。


线网(wire)

wire 类型表示硬件单元之间的物理连线,由其连接的器件输出端连续驱动。如果没有驱动元件连接到 wire 型变量,缺省值一般为 “Z”。举例如下:

wire   interrupt ;
wire   flag1, flag2 ;
wire   gnd = 1'b0 ;


线网型还有其他数据类型,包括 wand,wor,wri,triand,trior,trireg 等。这些数据类型用的频率不是很高,这里不做介绍。


寄存器(reg)

寄存器(reg)用来表示存储单元,它会保持数据原有的值,直到被改写。声明举例如下:

reg    clk_temp;
reg    flag1, flag2 ;


例如在 always 块中,寄存器可能被综合成边沿触发器,在组合逻辑中可能被综合成 wire 型变量。寄存器不需要驱动源,也不一定需要时钟信号。在仿真时,寄存器的值可在任意时刻通过赋值操作进行改写。例如:

reg rstn ;
initial begin
    rstn = 1'b0 ;
    #100 ;
    rstn = 1'b1 ;
end


向量

当位宽大于 1 时,wire 或 reg 即可声明为向量的形式。例如:

reg [3:0]      counter ;    //声明4bit位宽的寄存器counter
wire [32-1:0]  gpio_data;   //声明32bit位宽的线型变量gpio_data
wire [8:2]     addr ;       //声明7bit位宽的线型变量addr,位宽范围为8:2
reg [0:31]     data ;       //声明32bit位宽的寄存器变量data, 最高有效位为0


对于上面的向量,我们可以指定某一位或若干相邻位,作为其他逻辑使用。例如:

wire [9:0]     data_low = data[0:9] ;
addr_temp[3:2] = addr[8:7] + 1'b1 ;


Verilog 支持可变的向量域选择,例如:

reg [31:0]     data1 ;
reg [3:0]      byte1 [7:0];
integer j ;
always@* begin
    for (j=0; j<=3;j=j+1) begin
        byte1[j] = data1[(j+1)*4-1 : j*4];
        //把data1[7:0]…data1[31:24]依次赋值给byte1[0][7:0]…byte[3][7:0]
    end
end


Verillog 还支持指定 bit 位后固定位宽的向量域选择访问。

[bit+: width] : 从起始 bit 位开始递增,位宽为 width。
[bit-: width] : 从起始 bit 位开始递减,位宽为 width。
//下面 2 种赋值是等效的
A = data1[31-: 8] ;
A = data1[31:24] ;
//下面 2 种赋值是等效的
B = data1[0+ : 8] ;
B = data1[0:7] ;


对信号重新进行组合成新的向量时,需要借助大括号。例如:

wire [31:0]    temp1, temp2 ;
assign temp1 = {byte1[0][7:0], data1[31:8]};  //数据拼接
assign temp2 = {32{1'b0}};  //赋值32位的数值0


整数,实数,时间等数据类型实际也属于寄存器类型。


整数(integer)

整数类型用关键字 integer 来声明。声明时不用指明位宽,位宽和编译器有关,一般为32 bit。reg 型变量为无符号数,而 integer 型变量为有符号数。例如:

reg [31:0]      data1 ;
reg [3:0]       byte1 [7:0]; //数组变量,后续介绍
integer j ;  //整型变量,用来辅助生成数字电路
always@* begin
    for (j=0; j<=3;j=j+1) begin
        byte1[j] = data1[(j+1)*4-1 : j*4];
        //把data1[7:0]…data1[31:24]依次赋值给byte1[0][7:0]…byte[3][7:0]
        end
end


此例中,integer 信号 j 作为辅助信号,将 data1 的数据依次赋值给数组 byte1。综合后实际电路里并没有 j 这个信号,j 只是辅助生成相应的硬件电路。


实数(real)

实数用关键字 real 来声明,可用十进制或科学计数法来表示。实数声明不能带有范围,默认值为 0。如果将一个实数赋值给一个整数,则只有实数的整数部分会赋值给整数。例如:

real        data1 ;
integer     temp ;
initial begin
    data1 = 2e3 ;
    data1 = 3.75 ;
end
initial begin
    temp = data1 ; //temp 值的大小为3
end


时间(time)

Verilog 使用特殊的时间寄存器 time 型变量,对仿真时间进行保存。其宽度一般为 64 bit,通过调用系统函数 $time 获取当前仿真时间。例如:

time       current_time ;
initial begin
       #100 ;
       current_time = $time ; //current_time 的大小为 100
end


数组

在 Verilog 中允许声明 reg, wire, integer, time, real 及其向量类型的数组。


数组维数没有限制。线网数组也可以用于连接实例模块的端口。数组中的每个元素都可以作为一个标量或者向量,以同样的方式来使用,形如:<数组名>[<下标>]。对于多维数组来讲,用户需要说明其每一维的索引。例如:

integer          flag [7:0] ; //8个整数组成的数组
reg  [3:0]       counter [3:0] ; //由4个4bit计数器组成的数组
wire [7:0]       addr_bus [3:0] ; //由4个8bit wire型变量组成的数组
wire             data_bit[7:0][5:0] ; //声明1bit wire型变量的二维数组
reg [31:0]       data_4d[11:0][3:0][3:0][255:0] ; //声明4维的32bit数据变量数组


下面显示了对数组元素的赋值操作:

flag [1]   = 32'd0 ; //将flag数组中第二个元素赋值为32bit的0值
counter[3] = 4'hF ;  //将数组counter中第4个元素的值赋值为4bit 十六进制数F,等效于counter[3][3:0] = 4'hF,即可省略宽度;
assign addr_bus[0]        = 8'b0 ; //将数组addr_bus中第一个元素的值赋值为0
assign data_bit[0][1]     = 1'b1;  //将数组data_bit的第1行第2列的元素赋值为1,这里不能省略第二个访问标号,即 assign data_bit[0] = 1'b1; 是非法的。
data_4d[0][0][0][0][15:0] = 15'd3 ;  //将数组data_4d中标号为[0][0][0][0]的寄存器单元的15~0bit赋值为3


虽然数组与向量的访问方式在一定程度上类似,但不要将向量和数组混淆。向量是一个单独的元件,位宽为 n;数组由多个元件组成,其中每个元件的位宽为 n 或 1。它们在结构的定义上就有所区别。


存储器

存储器变量就是一种寄存器数组,可用来描述 RAM 或 ROM 的行为。例如:

reg               membit[0:255] ;  //256bit的1bit存储器
reg  [7:0]        mem[0:1023] ;    //1Kbyte存储器,位宽8bit
mem[511] = 8'b0 ;                  //令第512个8bit的存储单元值为0


参数

参数用来表示常量,用关键字 parameter 声明,只能赋值一次。例如:

parameter      data_width = 10'd32 ;
parameter      i=1, j=2, k=3 ;
parameter      mem_size = data_width * 10 ;


但是,通过实例化的方式,可以更改参数在模块中的值。此部分以后会介绍。


局部参数用 localparam 来声明,其作用和用法与 parameter 相同,区别在于它的值不能被改变。所以当参数只在本模块中调用时,可用 localparam 来说明。


字符串

字符串保存在 reg 类型的变量中,每个字符占用一个字节(8bit)。因此寄存器变量的宽度应该足够大,以保证不会溢出。


字符串不能多行书写,即字符串中不能包含回车符。如果寄存器变量的宽度大于字符串的大小,则使用 0 来填充左边的空余位;如果寄存器变量的宽度小于字符串大小,则会截去字符串左边多余的数据。例如,为存储字符串 “run.runoob.com”, 需要 14*8bit 的存储单元:

reg [0: 14*8-1]       str ;
initial begin
    str = "run.runoob.com";
end


有一些特殊字符在显示字符串中有特殊意义,例如换行符,制表符等。如果需要在字符串中显示这些特殊的字符,则需要在前面加前缀转义字符 \ 。例如下表所示:

1670679705012.jpg

d.表达式

1670679715231.jpg

相关文章
|
8月前
|
存储 编译器 索引
Verilog基础【一】
Verilog基础【一】
290 0
|
6月前
|
算法 异构计算
FPGA入门(2):Verilog HDL基础语法
FPGA入门(2):Verilog HDL基础语法
46 0
|
7月前
|
监控 算法 编译器
初识 Verilog HDL , 什么是verilog HDL?
这是一篇关于Verilog HDL的学习笔记摘要。Verilog是一种硬件描述语言,用于数字系统的多层抽象设计,包括行为、数据流和结构。设计流程包括功能设计、Verilog描述、软件模拟、逻辑综合和硬件实现。模块是Verilog的基本单元,代表逻辑实体,通过并行运行和分层连接实现复杂系统。模块包含端口列表和定义,通过模块调用(实例化)实现子模块连接。Verilog的参数声明和预处理指令(如`define、`include和`timescale)增加了代码的可读性和灵活性。笔记指出Verilog与C语言有相似之处,易于学习。
|
8月前
|
存储 人工智能 安全
Verilog基础【二】
Verilog基础【二】
273 1
|
8月前
|
C++
Verilog 函数和任务
Verilog 函数和任务
|
算法
|
存储 程序员 开发工具
第三章 硬件描述语言verilog(一)
第三章 硬件描述语言verilog(一)
473 0
第三章 硬件描述语言verilog(一)
|
算法 异构计算
Verilog HDL函数与任务的使用
⭐本专栏针对FPGA进行入门学习,从数电中常见的逻辑代数讲起,结合Verilog HDL语言学习与仿真,主要对组合逻辑电路与时序逻辑电路进行分析与设计,对状态机FSM进行剖析与建模。
128 0
Verilog HDL函数与任务的使用
|
自然语言处理 算法 异构计算
Verilog HDL基本语法规则
本专栏针对FPGA进行入门学习,从数电中常见的逻辑代数讲起,结合Verilog HDL语言学习与仿真,主要对组合逻辑电路与时序逻辑电路进行分析与设计,对状态机FSM进行剖析与建模。
264 0
Verilog HDL基本语法规则
|
开发工具 C语言 芯片