100天搞定机器学习|Day35 深度学习之神经网络的结构

简介: 100天搞定机器学习|Day35 深度学习之神经网络的结构

这集Grant大佬假设大家都没有神经网络的基础,为新手讲解神经网络基本概念,让大家再听说神经网络学习的时候,可以明白究竟是什么意思。大佬选择经典的多层感知器(MLP)结构解决手写数字识别问题,理由是理解了经典原版,才能更好地理解功能强大的变种,比如CNN和LSTM。


首先看看神经元和他们是怎么连接的


神经元可以理解为一个装着0到1之间数字的容器。以28*28输入图像每一个像素为例,每一个原点都是一个神经元,其中数字代表对于像素的灰度值,0表示纯黑,1表示纯白,这个数字在神经网络里称作“激活值”。


640.jpg


这784个神经元就组成了网络的第一层,最后一层的十个神经元代表0-9这十个数,同样的,他们的激活值也在0-1之间,代表了输入图像对应哪个数字的可能性。网络中间层被称为隐含层,可以看做黑箱,数字识别的具体工作就在这里完成,这里加了两层隐含层,每层有16个神经元——随便设置的,只是为了显得好看,后期还可以再调整。


640.jpg


神经网络处理信息的核心机制正是如此,一层的激活值通过一定的运算,得出下一层的激活值。上面也提到784个神经元代表的是数字图案,那么下一层激活值也会产生某些特殊的图案,最终在输出层最亮的神经元表示神经网络的选择。


640.jpg


我们再看看如何训练,为什么这种层状结构就能识别数字呢?


我们可以把数字进行拆解,理想状况下希望倒数第二层的各个神经元可以分别对应上一个笔画。


640.jpg


再来看隐含层第一层,当输入为9或8的上面带圈的数字时,某个神经元的激活值就会接近1,希望所有这种位于图像顶部的圆圈图案都能点亮这个神经元,这样,从第三次到输出层,我们只需要学习哪些部件能组合出哪个数字即可。


640.jpg



但是如何识别圆圈呢?同理可以把它拆分成更细微的问题。


640.jpg


于是我们希望网络第二层的各个神经元对应这些短边,第二层就能把所有关联短边的八到十个神经元都点亮,接着就能点亮对于顶部圆圈和长竖条的神经元。


640.png


然后我们看看连线的作用


如何让第二层(隐含层的第一层)中的这一个神经元能够能够识别出图像的这一块区域是否存在一条边?


640.jpg


我们设计让第二层的某一个神经元能正确识别图像中的这块区域里是否存在一条边。


640.jpg


我们拿出第一层(输入层/第0层)的激活值,并赋上权重(要关注区域的权重为正值,否则为0),这样对所有像素值求加权和,就只会累加关注区域的像素值了。


640.jpg



绿色为正值,红色为负值,颜色越暗表示权重越接近0


640.jpg


所以想要识别是否存在一条边,只需要给周围一圈的像素都赋予负权重


640.jpg


计算的加权值可以使任意大小的


640.jpg


但是我们需要的是将其压缩到0-1之间


640.jpg


这里就需要Sigmoid函数了,这就是激活函数。


640.jpg


激活值实际上就是一个对加权之和到底有多正的打分,但是有时加权之和大于0时,也不想点亮神经元,比如想要加权和大于10时才让他激发,这里就还需要加上一个偏置值,保证不随便激发。


640.jpg


权重告诉我们第二个神经元关注什么样的像素图案

bias告诉我们加权和要多大才能让神经元的激发有意义


640.jpg


这里有13000多个参数需要调整,所以这里所谓的学习就是找到正确的权重和偏置。刚开始讲到我们把神经元看作是数字容器,但是这些数字取决于输入的图像,所以把神经元看过一个函数才更准确,它的输入是上一层所有神经元的输出,它的输出是一个0-1之间的值。其实整个神经网络也是一个函数,输入784个值,输出10个值。不过它是一个包含了13000个权重、偏置参数的极其复杂的函数。


640.jpg

640.png


需要注意的是,机器学习尤其是神经网络运算与线性代数是密不可分的,之前有过介绍,请移步:


640.jpg


神经网络中需要大量的矩阵乘法和sigmoid映射运算


640.jpg


这种运算方式,非常适合编程,比如可以用Python的numpy很简单的实现。


640.jpg


最后需要一提的是,现在神经网络基本不再使用sigmoid了,比较流行的是ReLU(线性整流函数)。


640.jpg


end



100天搞定机器学习|Day36,我们将进行下一节,讲一下神经网络是如何通过数据来获得合适的权重和偏置的,敬请期待!

相关文章
|
14天前
|
机器学习/深度学习 人工智能 安全
探索AI的未来:从机器学习到深度学习
【10月更文挑战第28天】本文将带你走进AI的世界,从机器学习的基本概念到深度学习的复杂应用,我们将一起探索AI的未来。你将了解到AI如何改变我们的生活,以及它在未来可能带来的影响。无论你是AI专家还是初学者,这篇文章都将为你提供新的视角和思考。让我们一起探索AI的奥秘,看看它将如何塑造我们的未来。
51 3
|
8天前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习中的卷积神经网络:从理论到实践
【10月更文挑战第35天】在人工智能的浪潮中,深度学习技术以其强大的数据处理能力成为科技界的宠儿。其中,卷积神经网络(CNN)作为深度学习的一个重要分支,在图像识别和视频分析等领域展现出了惊人的潜力。本文将深入浅出地介绍CNN的工作原理,并结合实际代码示例,带领读者从零开始构建一个简单的CNN模型,探索其在图像分类任务中的应用。通过本文,读者不仅能够理解CNN背后的数学原理,还能学会如何利用现代深度学习框架实现自己的CNN模型。
|
7天前
|
机器学习/深度学习 人工智能 算法框架/工具
深度学习中的卷积神经网络(CNN)及其在图像识别中的应用
【10月更文挑战第36天】探索卷积神经网络(CNN)的神秘面纱,揭示其在图像识别领域的威力。本文将带你了解CNN的核心概念,并通过实际代码示例,展示如何构建和训练一个简单的CNN模型。无论你是深度学习的初学者还是希望深化理解,这篇文章都将为你提供有价值的见解。
|
4天前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
垃圾识别分类系统。本系统采用Python作为主要编程语言,通过收集了5种常见的垃圾数据集('塑料', '玻璃', '纸张', '纸板', '金属'),然后基于TensorFlow搭建卷积神经网络算法模型,通过对图像数据集进行多轮迭代训练,最后得到一个识别精度较高的模型文件。然后使用Django搭建Web网页端可视化操作界面,实现用户在网页端上传一张垃圾图片识别其名称。
25 0
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
|
4天前
|
机器学习/深度学习 人工智能 算法
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
手写数字识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Flask框架,开发网页端操作平台,实现用户上传一张图片识别其名称。
21 0
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
|
20天前
|
机器学习/深度学习 搜索推荐 安全
深度学习之社交网络中的社区检测
在社交网络分析中,社区检测是一项核心任务,旨在将网络中的节点(用户)划分为具有高内部连接密度且相对独立的子群。基于深度学习的社区检测方法,通过捕获复杂的网络结构信息和节点特征,在传统方法基础上实现了更准确、更具鲁棒性的社区划分。
35 7
|
21天前
|
机器学习/深度学习 自然语言处理 TensorFlow
深度学习的奥秘:探索神经网络背后的魔法
【10月更文挑战第22天】本文将带你走进深度学习的世界,揭示神经网络背后的神秘面纱。我们将一起探讨深度学习的基本原理,以及如何通过编程实现一个简单的神经网络。无论你是初学者还是有一定基础的学习者,这篇文章都将为你提供有价值的信息和启示。让我们一起踏上这段奇妙的旅程吧!
|
22天前
|
机器学习/深度学习 人工智能 自动驾驶
深度学习中的卷积神经网络(CNN)及其应用
【10月更文挑战第21天】本文旨在深入探讨深度学习领域的核心组成部分——卷积神经网络(CNN)。通过分析CNN的基本结构、工作原理以及在图像识别、语音处理等领域的广泛应用,我们不仅能够理解其背后的技术原理,还能把握其在现实世界问题解决中的强大能力。文章将用浅显的语言和生动的例子带领读者一步步走进CNN的世界,揭示这一技术如何改变我们的生活和工作方式。
|
23天前
|
机器学习/深度学习 计算机视觉 网络架构
【YOLO11改进 - C3k2融合】C3k2融合YOLO-MS的MSBlock : 分层特征融合策略,轻量化网络结构
【YOLO11改进 - C3k2融合】C3k2融合YOLO-MS的MSBlock : 分层特征融合策略,轻量化网络结构
|
8天前
|
机器学习/深度学习 人工智能 自动驾驶
深入解析深度学习中的卷积神经网络(CNN)
深入解析深度学习中的卷积神经网络(CNN)
22 0

热门文章

最新文章