【阿旭机器学习实战】【20】支持向量机SVM原理简介及示例演示:画出SVM二维决策边界与分离非线性坐标点

简介: 【阿旭机器学习实战】【20】支持向量机SVM原理简介及示例演示:画出SVM二维决策边界与分离非线性坐标点

支持向量机SVM简介及示例演示


【关键词】支持向量,最大几何间隔,拉格朗日乘子法


1. 支持向量机的原理


支持向量机(Support Vector Machine),其含义是通过支持向量运算的分类器。其中“机”的意思是机器,可以理解为分类器。

那么什么是支持向量呢?在求解的过程中,会发现只根据部分数据就可以确定分类器,这些数据称为支持向量。

见下图,在一个二维环境中,其中点R,S,G点和其它靠近中间黑线的点可以看作为支持向量,它们可以决定分类器,也就是黑线的具体参数。


583dd31adf4a4147899026a4b7ac007d.png


2. 解决的问题


  • 线性分类


在训练数据中,每个数据都有n个的属性和一个二类类别标志,我们可以认为这些数据在一个n维空间里。我们的目标是找到一个n-1维的超平面(hyperplane),这个超平面可以将数据分成两部分,每部分数据都属于同一个类别。

其实这样的超平面有很多,我们要找到一个最佳的。因此,增加一个约束条件:这个超平面到每边最近数据点的距离是最大的。也成为最大间隔超平面(maximum-margin hyperplane)。这个分类器也成为最大间隔分类器(maximum-margin classifier)。

支持向量机是一个二类分类器。


  • 非线性分类


SVM的一个优势是支持非线性分类。它结合使用拉格朗日乘子法和KKT条件,以及核函数可以产生非线性分类器。


3. SVM解决问题的步骤


1.SVM的目的是要找到一个线性分类的最佳超平面 f(x)=xw+b=0。求 w 和 b。


2.首先通过两个分类的最近点,找到f(x)的约束条件。


3.有了约束条件,就可以通过拉格朗日乘子法和KKT条件来求解,这时,问题变成了求拉格朗日乘子αi 和 b。


4.对于异常点的情况,加入松弛变量ξ来处理。


非线性分类的问题:映射到高维度、使用核函数。


3.1 线性分类及其约束条件


SVM的解决问题的思路是找到离超平面的最近点,通过其约束条件求出最优解。

782cca8502a34cc7bb834bcd7bd64db0.png


3.2 最大几何间隔(geometrical margin)

0c167a07d2c54faa969b32145afcb152.png

71fdd9c892104c2386e45914b7ecd423.png


3.3 求解问题w,b


我们使用拉格朗日乘子法


来求w和b,一个重要原因是使用拉格朗日乘子法后,还可以解决非线性划分问题。

拉格朗日乘子法可以解决下面这个问题:


2889de32975d45ed9c9a28546bcdb5b0.png

消除w之后变为:

65d36313854a498eb50aa33ade7b7ffa.png


可见使用拉格朗日乘子法后,求w,b的问题变成了求拉格朗日乘子αi和b的问题。

到后面更有趣,变成了不求w了,因为αi可以直接使用到分类器中去,并且可以使用αi支持非线性的情况.


4. 实战示例


1、示例1:画出SVM二维决策边界


import numpy as np
from sklearn.svm import SVC
import matplotlib.pyplot as plt
%matplotlib inline


随机生成一些数据


a = np.random.randn(20,2) + [2,2]
b = np.random.randn(20,2) + [-1,-3]
data = np.concatenate([a,b])
data.shape
(40, 2)
• 1
# 将数据点分为2类,一类20个点
target = [0]*20 + [1]*20
plt.scatter(data[:,0],data[:,1],c=target)
• 1
<matplotlib.collections.PathCollection at 0x1e4a3106668>

732e1085dfc94a4dbf18eae104828d9a.png

# 创建支持向量机分类器
svc = SVC(kernel="linear")
• 1
• 2
svc.fit(data,target)


SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0,
  decision_function_shape='ovr', degree=3, gamma='auto', kernel='linear',
  max_iter=-1, probability=False, random_state=None, shrinking=True,
  tol=0.001, verbose=False)
# 找到支持向量
sv = svc.support_vectors_
sv
array([[ 0.47403487,  1.35490312],
       [ 2.76462572, -0.35759099],
       [ 0.70116275, -2.38879174]])
# 提取斜率:svc.coef_
# mx + ny + b = 0 ==> ny = -mx - b ==> y = -(m/n)x - b/n
w = -svc.coef_[0,0]/svc.coef_[0,1]
w
-0.747621114673942
# 提取截距:svc.intercept_
b = -svc.intercept_[0]/svc.coef_[0,1]
b
-0.07777143534587211
x = np.linspace(-3,6,100)
# 直线方程
y = w*x + b
plt.scatter(data[:,0],data[:,1],c=target)
plt.scatter(sv[:,0],sv[:,1],c="r",s=300,alpha=0.5)
plt.plot(x,y)
[<matplotlib.lines.Line2D at 0x1e4a0fd2d30>]

d909f993238c4de0909150e804477065.png


上图中,红色的点表示支持向量直线表示SVM的决策边界


2、示例2:SVM分离非线性坐标点


2.1 产生非线性随机点


# 随机产生180个点
data = np.random.randn(180,2)
plt.scatter(data[:,0],data[:,1])
<matplotlib.collections.PathCollection at 0x1e4a4b0fbe0>

4723006b5a4247d8b3fb6bf67eb11375.png

a = np.array([[1,2],[-1,2],[-1,-1],[1,-4]])
target = np.logical_xor(a[:,0]>0,a[:,1]>0)
target
array([False,  True, False,  True])
# 通过异或方式,产生非线性分类目标点
target = np.logical_xor(data[:,0]>0,data[:,1]>0)
target
array([False,  True,  True,  True, False,  True, False, False, False,
        True,  True,  True, False,  True, False,  True,  True, False,
        True,  True, False,  True, False,  True, False,  True, False,
       False, False, False, False, False,  True,  True,  True,  True,
       False, False,  True, False,  True,  True,  True, False,  True,
        True,  True, False,  True, False, False,  True, False,  True,
        True,  True, False,  True, False, False, False, False,  True,
        True, False,  True,  True, False, False, False,  True, False,
       False,  True, False,  True, False,  True,  True, False, False,
        True,  True, False,  True, False, False, False,  True, False,
       False, False, False,  True,  True, False, False,  True,  True,
       False,  True, False, False,  True, False,  True, False, False,
       False, False,  True,  True,  True,  True, False,  True,  True,
        True, False,  True,  True,  True, False,  True,  True, False,
       False,  True, False,  True,  True,  True,  True, False,  True,
        True,  True,  True, False,  True,  True,  True, False, False,
       False,  True,  True,  True, False, False, False,  True, False,
        True,  True, False,  True, False, False,  True,  True,  True,
        True,  True,  True, False,  True, False,  True, False,  True,
       False,  True,  True,  True, False,  True, False,  True, False])


np.logical_xor的作用示例

a = np.array([[1,2],[-1,2],[-1,-1],[1,-4]])

target = np.logical_xor(a[:,0]>0,a[:,1]>0)

target结果为:array([False, True, False, True])


plt.scatter(data[:,0],data[:,1],c=target)

96b545f5d4994c06b30c277087283c75.png

2.2 构建SVM模型并训练


svc = SVC() # SVC的核函数默认为rbf,基于半径的核函数
svc
SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0,
  decision_function_shape='ovr', degree=3, gamma='auto', kernel='rbf',
  max_iter=-1, probability=False, random_state=None, shrinking=True,
  tol=0.001, verbose=False)
svc.fit(data,target)
SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0,
  decision_function_shape='ovr', degree=3, gamma='auto', kernel='rbf',
  max_iter=-1, probability=False, random_state=None, shrinking=True,
  tol=0.001, verbose=False)


2.3 绘制轮廓曲线


# 确定轮廓曲线的范围
xx,yy = np.meshgrid(np.linspace(-3,3,500),np.linspace(-3,3,500))
xy = np.c_[xx.ravel(),yy.ravel()]
• 1
xy.shape
• 1
(250000, 2)
# 求测试点到分割超平面之间的距离
distances = svc.decision_function(xy)
distances.shape
(250000,)
plt.contour(xx,yy,distances.reshape(xx.shape),cmap="PuOr_r")
plt.scatter(data[:,0],data[:,1],c=target)
<matplotlib.collections.PathCollection at 0x1e4a46c2518>

7c5438f64b2d4895be43525bd7fe442b.png


相关文章
|
14天前
|
机器学习/深度学习 数据可视化 计算机视觉
【视频】机器学习交叉验证CV原理及R语言主成分PCA回归分析犯罪率|数据共享
【视频】机器学习交叉验证CV原理及R语言主成分PCA回归分析犯罪率|数据共享
|
12天前
|
机器学习/深度学习 人工智能 并行计算
人工智能平台PAI产品使用合集之机器学习PAI中特征重要性的原理不知道如何解决
阿里云人工智能平台PAI是一个功能强大、易于使用的AI开发平台,旨在降低AI开发门槛,加速创新,助力企业和开发者高效构建、部署和管理人工智能应用。其中包含了一系列相互协同的产品与服务,共同构成一个完整的人工智能开发与应用生态系统。以下是对PAI产品使用合集的概述,涵盖数据处理、模型开发、训练加速、模型部署及管理等多个环节。
|
1月前
|
机器学习/深度学习 自然语言处理 算法
|
2天前
|
机器学习/深度学习 算法 数据挖掘
【机器学习】各大模型原理简介
【机器学习】各大模型原理简介
|
8天前
|
机器学习/深度学习 自然语言处理 算法
机器学习算法原理与应用:深入探索与实战
【5月更文挑战第2天】本文深入探讨机器学习算法原理,包括监督学习(如线性回归、SVM、神经网络)、非监督学习(聚类、PCA)和强化学习。通过案例展示了机器学习在图像识别(CNN)、自然语言处理(RNN/LSTM)和推荐系统(协同过滤)的应用。随着技术发展,机器学习正广泛影响各领域,但也带来隐私和算法偏见问题,需关注解决。
|
10天前
|
机器学习/深度学习 数据采集 TensorFlow
【Python机器学习专栏】使用Python进行图像分类的实战案例
【4月更文挑战第30天】本文介绍了使用Python和深度学习库TensorFlow、Keras进行图像分类的实战案例。通过CIFAR-10数据集,展示如何构建和训练一个卷积神经网络(CNN)模型,实现对10个类别图像的识别。首先安装必要库,然后加载数据集并显示图像。接着,建立基本CNN模型,编译并训练模型,最后评估其在测试集上的准确性。此案例为初学者提供了图像分类的入门教程,为进一步学习和优化打下基础。
|
10天前
|
机器学习/深度学习 PyTorch TensorFlow
【Python机器学习专栏】卷积神经网络(CNN)的原理与应用
【4月更文挑战第30天】本文介绍了卷积神经网络(CNN)的基本原理和结构组成,包括卷积层、激活函数、池化层和全连接层。CNN在图像识别等领域表现出色,其层次结构能逐步提取特征。在Python中,可利用TensorFlow或PyTorch构建CNN模型,示例代码展示了使用TensorFlow Keras API创建简单CNN的过程。CNN作为强大深度学习模型,未来仍有广阔发展空间。
|
10天前
|
机器学习/深度学习 算法 数据挖掘
【Python机器学习专栏】层次聚类算法的原理与应用
【4月更文挑战第30天】层次聚类是数据挖掘中的聚类技术,无需预设簇数量,能生成数据的层次结构。分为凝聚(自下而上)和分裂(自上而下)两类,常用凝聚层次聚类有最短/最长距离、群集平均和Ward方法。优点是自动确定簇数、提供层次结构,适合小到中型数据集;缺点是计算成本高、过程不可逆且对异常值敏感。在Python中可使用`scipy.cluster.hierarchy`进行实现。尽管有局限,层次聚类仍是各领域强大的分析工具。
|
10天前
|
机器学习/深度学习 算法 前端开发
【Python机器学习专栏】集成学习算法的原理与应用
【4月更文挑战第30天】集成学习通过组合多个基学习器提升预测准确性,广泛应用于分类、回归等问题。主要步骤包括生成基学习器、训练和结合预测结果。算法类型有Bagging(如随机森林)、Boosting(如AdaBoost)和Stacking。Python中可使用scikit-learn实现,如示例代码展示的随机森林分类。集成学习能降低模型方差,缓解过拟合,提高预测性能。
|
24天前
|
机器学习/深度学习 C++
R语言机器学习实战之多项式回归
R语言机器学习实战之多项式回归