Linux操作系统问题-----死锁产生的原因与解决办法

简介: Linux操作系统问题-----死锁产生的原因与解决办法

一、产生死锁的原因(两个):

由竞争资源引起死锁:多个进程,共享资源,资源不足,竞争资源。


竞争可剥夺性资源。譬如:CPU,可由优先级高的进程剥夺优先级低的进程的处理机。

竞争非剥夺性资源。譬如:系统中只有一台打印机R1和一台读卡机R2,进程P1和P2之间共享这些资源。当P1占用了R1会进一步要求R2的使用,但是此时P2占用了R2进一步请求着R1的使用;则P1与P2之间陷入了僵局,构成了死锁。


例子:


A有纸,B有笔


A:你不给我笔,我就写不了作业


B:你不给我纸,我就写不了作业



竞争临时性资源。譬如:一个进程需要使用另一个进程产生的结果,这属于一种临时性的资源,过了一段时间之后就没用了,也会产生死锁。(如下图所示:P1、P2、P3是进程,S1、S2、S3是产生的临时资源)


例子:


A要前进2步,到桌子前,再后退2步。


但如果执行顺序不合理:A先后退,就永远到不了桌子前,触发不了后续动作,就会死锁。



进程推进顺序不当引起死锁:进程运行过程中,请求和释放资源的顺序不当,而导致进程死锁。


二、产生死锁的四个必要条件:

① 互斥条件——进程要求对所分配的资源进行排它性控制,即在一段时间内某资源仅为一进程所占有。


② 请求和保持条件——当进程因请求资源而阻塞时,对已获得的资源保持不放。


③ 不剥夺条件——进程已获得的资源,在未使用完之前,不能被剥夺,只能在使用完时由自己释放。


④ 环路等待条件——在发生死锁时必然存在一个“进程—资源”的环形链。


三、解决死锁的基本方法(四种):

① 预防死锁——通过设置某些限制条件,以破坏产生死锁的四个必要条件中的一个或几个,来防止发生死锁。


② 避免死锁——在资源的动态分配过程中,使用某种方法去防止系统进入不安全状态,从而避免了死锁的发生。


③ 检测死锁——检测死锁方法允许系统运行过程中发生死锁。但通过系统所设置的检测机构,可以及时检测出死锁的发生,并精确地确定与死锁有关的进程和资源,然后采取适当措施,从系统中消除所发生的死锁。


④ 解除死锁——解除死锁是与检测死锁相配套的一种设施,用于将进程从死锁状态下解脱出来。常用的方法是撤销或者挂起一些进程,以便于释放出一些资源,再将它分配给已经处于阻塞的进程,使其转换为就绪状态可以继续运行。


四、如何避免死锁参考

在有些情况下死锁是可以避免的。三种用于避免死锁的技术:


加锁顺序(线程按照一定的顺序加锁)

加锁时限(线程尝试获取锁的时候加上一定的时限,超过时限则放弃对该锁的请求,并释放自己占有的锁)

死锁检测

加锁顺序


当多个线程需要相同的一些锁,但是按照不同的顺序加锁,死锁就很容易发生。


如果能确保所有的线程都是按照相同的顺序获得锁,那么死锁就不会发生。


如果一个线程(比如线程3)需要一些锁,那么它必须按照确定的顺序获取锁。它只有获得了从顺序上排在前面的锁之后,才能获取后面的锁。


例如,线程2和线程3只有在获取了锁A之后才能尝试获取锁C(译者注:获取锁A是获取锁C的必要条件)。因为线程1已经拥有了锁A,所以线程2和3需要一直等到锁A被释放。然后在它们尝试对B或C加锁之前,必须成功地对A加了锁。


按照顺序加锁是一种有效的死锁预防机制。但是,这种方式需要你事先知道所有可能会用到的锁(译者注:并对这些锁做适当的排序),但总有些时候是无法预知的。


加锁时限

另外一个可以避免死锁的方法是在尝试获取锁的时候加一个超时时间,这也就意味着在尝试获取锁的过程中若超过了这个时限该线程则放弃对该锁请求。若一个线程没有在给定的时限内成功获得所有需要的锁,则会进行回退并释放所有已经获得的锁,然后等待一段随机的时间再重试。这段随机的等待时间让其它线程有机会尝试获取相同的这些锁,并且让该应用在没有获得锁的时候可以继续运行(加锁超时后可以先继续运行干点其它事情,再回头来重复之前加锁的逻辑)。


死锁检测

死锁检测是一个更好的死锁预防机制,它主要是针对那些不可能实现按序加锁并且锁超时也不可行的场景。


每当一个线程获得了锁,会在线程和锁相关的数据结构中(map、graph等等)将其记下。除此之外,每当有线程请求锁,也需要记录在这个数据结构中。


当一个线程请求锁失败时,这个线程可以遍历锁的关系图看看是否有死锁发生。例如,线程A请求锁7,但是锁7这个时候被线程B持有,这时线程A就可以检查一下线程B是否已经请求了线程A当前所持有的锁。如果线程B确实有这样的请求,那么就是发生了死锁(线程A拥有锁1,请求锁7;线程B拥有锁7,请求锁1)。


当然,死锁一般要比两个线程互相持有对方的锁这种情况要复杂的多。线程A等待线程B,线程B等待线程C,线程C等待线程D,线程D又在等待线程A。线程A为了检测死锁,它需要递进地检测所有被B请求的锁。从线程B所请求的锁开始,线程A找到了线程C,然后又找到了线程D,发现线程D请求的锁被线程A自己持有着。这是它就知道发生了死锁。


那么当检测出死锁时,这些线程该做些什么呢?


一个可行的做法是释放所有锁,回退,并且等待一段随机的时间后重试。这个和简单的加锁超时类似,不一样的是只有死锁已经发生了才回退,而不会是因为加锁的请求超时了。虽然有回退和等待,但是如果有大量的线程竞争同一批锁,它们还是会重复地死锁(原因同超时类似,不能从根本上减轻竞争)。


一个更好的方案是给这些线程设置优先级,让一个(或几个)线程回退,剩下的线程就像没发生死锁一样继续保持着它们需要的锁。如果赋予这些线程的优先级是固定不变的,同一批线程总是会拥有更高的优先级。为避免这个问题,可以在死锁发生的时候设置随机的优先级。


总结:死锁是系统资源竞争的结果,要尽量避免,增强代码的逻辑以及对操作系统的理解。

目录
相关文章
|
4天前
|
运维 自然语言处理 Ubuntu
OS Copilot-操作系统智能助手-Linux新手小白的福音
OS Copilot 是阿里云推出的一款操作系统智能助手,专为Linux新手设计,支持自然语言问答、辅助命令执行和系统运维调优等功能。通过简单的命令行操作,用户可以快速获取所需信息并执行任务,极大提升了Linux系统的使用效率。安装步骤简单,只需在阿里云服务器上运行几条命令即可完成部署。使用过程中,OS Copilot不仅能帮助查找命令,还能处理文件和复杂场景,显著节省了查找资料的时间。体验中发现,部分输出格式和偶尔出现的英文提示有待优化,但整体非常实用,特别适合Linux初学者。
43 10
|
4天前
|
Linux
Linux 操作系统
在 Linux 中,UID(用户 ID)是标识用户身份的重要概念。UID 唯一标识每个用户,通过 UID 可区分不同用户类别:UID 0 为超级用户,1-999 为系统用户,1000 及以上为普通用户。因此,正确选项为:UID 标识用户、可区分用户类别、普通用户 UID 大于 1000。
|
2月前
|
算法 Linux 调度
深入理解Linux操作系统的进程管理
本文旨在探讨Linux操作系统中的进程管理机制,包括进程的创建、执行、调度和终止等环节。通过对Linux内核中相关模块的分析,揭示其高效的进程管理策略,为开发者提供优化程序性能和资源利用率的参考。
109 1
|
1月前
|
缓存 安全 Linux
Linux系统查看操作系统版本信息、CPU信息、模块信息
在Linux系统中,常用命令可帮助用户查看操作系统版本、CPU信息和模块信息
109 23
|
1月前
|
弹性计算 自然语言处理 Ubuntu
OS Copilot-操作系统智能助手-Linux新手小白的福音
OS Copilot是由阿里云推出的操作系统智能助手,专为Linux新手设计,支持自然语言问答、辅助命令执行等功能,极大提升了Linux系统的使用效率。用户只需通过简单的命令或自然语言描述问题,OS Copilot即可快速提供解决方案并执行相应操作。例如,查询磁盘使用量等常见任务变得轻松快捷。此外,它还支持从文件读取复杂任务定义,进一步简化了操作流程。虽然在某些模式下可能存在小问题,但总体上大大节省了学习和操作时间,提高了工作效率。
131 2
OS Copilot-操作系统智能助手-Linux新手小白的福音
|
30天前
|
弹性计算 运维 Ubuntu
os-copilot在Alibaba Cloud Linux镜像下的安装与功能测试
我顺利使用了OS Copilot的 -t -f 功能,我的疑惑是在换行的时候就直接进行提问了,每次只能写一个问题,没法连续换行更有逻辑的输入问题。 我认为 -t 管道 功能有用 ,能解决环境问题的连续性操作。 我认为 -f 管道 功能有用 ,可以单独创建可连续性提问的task问题。 我认为 | 对文件直接理解在新的服务器理解有很大的帮助。 此外,我还有建议 可以在非 co 的环境下也能进行连续性的提问。
70 7
|
1月前
|
存储 运维 安全
深入解析操作系统控制台:阿里云Alibaba Cloud Linux(Alinux)的运维利器
本文将详细介绍阿里云的Alibaba Cloud Linux操作系统控制台的功能和优势。
66 5
|
1月前
|
安全 大数据 Linux
云上体验最佳的服务器操作系统 - Alibaba Cloud Linux | 飞天技术沙龙-CentOS 迁移替换专场
本次方案的主题是云上体验最佳的服务器操作系统 - Alibaba Cloud Linux ,从 Alibaba Cloud Linux 的产生背景、产品优势以及云上用户使用它享受的技术红利等方面详细进行了介绍。同时,通过国内某社交平台、某快递企业、某手机客户大数据业务 3 大案例,成功助力客户实现弹性扩容能力提升、性能提升、降本增效。 1. 背景介绍 2. 产品介绍 3. 案例分享
|
3月前
|
缓存 并行计算 Linux
深入解析Linux操作系统的内核优化策略
本文旨在探讨Linux操作系统内核的优化策略,包括内核参数调整、内存管理、CPU调度以及文件系统性能提升等方面。通过对这些关键领域的分析,我们可以理解如何有效地提高Linux系统的性能和稳定性,从而为用户提供更加流畅和高效的计算体验。
98 17
|
2月前
|
安全 Linux 数据安全/隐私保护
深入Linux操作系统:文件系统和权限管理
在数字世界的海洋中,操作系统是连接用户与硬件的桥梁,而Linux作为其中的佼佼者,其文件系统和权限管理则是这座桥梁上不可或缺的结构。本文将带你探索Linux的文件系统结构,理解文件权限的重要性,并通过实际案例揭示如何有效地管理和控制这些权限。我们将一起航行在Linux的命令行海洋中,解锁文件系统的奥秘,并学习如何保护你的数据免受不必要的访问。