java基础(三)hashMap底层原理

简介: java基础(三)hashMap底层原理

HashMap底层原理

hashMap底层原理主要是jdk1.7和1.8以上的区别。

jdk1.7中底层是由数组(也有叫做“位桶”的)+链表实现;jdk1.8中底层是由数组+链表/红黑树实现。

参考学习:

https://blog.csdn.net/jswd_50x/article/details/86542240

HashMap面试题

1.谈一下HashMap的特性?

20200401134307494.png

2.谈一下HashMap的底层原理是什么?

20200401134307494.png

3.谈一下hashMap中put是如何实现的?

20200401134307494.png

4.谈一下hashMap中什么时候需要进行扩容,扩容resize()又是如何实现的?

20200401134307494.png

20200401134307494.png

5.谈一下hashMap中get是如何实现的?

20200401134307494.png

6.谈一下HashMap中hash函数是怎么实现的?还有哪些hash函数的实现方式?

20200401134307494.png

7.为什么不直接将key作为哈希值而是与高16位做异或运算?

20200401134307494.png

8.为什么是16?为什么必须是2的幂?如果输入值不是2的幂比如10会怎么样?

https://blog.csdn.net/sidihuo/article/details/78489820
https://blog.csdn.net/eaphyy/article/details/84386313

20200401134307494.png

9.谈一下当两个对象的hashCode相等时会怎么样?

20200401134307494.png

10.如果两个键的hashcode相同,你如何获取值对象?

20200401134307494.png

11."如果HashMap的大小超过了负载因子(load factor)定义的容量,怎么办?

20200401134307494.png

12.HashMap和HashTable的区别

20200401134307494.png

13.请解释一下HashMap的参数loadFactor,它的作用是什么?

20200401134307494.png

14.传统hashMap的缺点(为什么引入红黑树?):

20200401134307494.png

15. 平时在使用HashMap时一般使用什么类型的元素作为Key?

20200401134307494.png

16.JDK7和JDK8的区别

1.JDK8中链表会转为红黑树
2.新节点插入链表的顺序不同(JDK7是插入头结点,JDK8因为要遍历链表把链表变为红黑树所以采用插入尾节点)
3.hash算法简化。
4.resize的逻辑修改(JDK7会出现死循环,JDK8不会)
死锁场景:https://blog.csdn.net/qq_36071795/article/details/83655029
弄懂死锁:https://blog.csdn.net/weixin_34041003/article/details/87986378?depth_1-utm_source=distribute.pc_relevant.none-task&utm_source=distribute.pc_relevant.none-task


相关文章
|
3月前
|
存储 安全 Java
Java 集合框架中的老炮与新秀:HashTable 和 HashMap 谁更胜一筹?
嗨,大家好,我是技术伙伴小米。今天通过讲故事的方式,详细介绍 Java 中 HashMap 和 HashTable 的区别。从版本、线程安全、null 值支持、性能及迭代器行为等方面对比,帮助你轻松应对面试中的经典问题。HashMap 更高效灵活,适合单线程或需手动处理线程安全的场景;HashTable 较古老,线程安全但性能不佳。现代项目推荐使用 ConcurrentHashMap。关注我的公众号“软件求生”,获取更多技术干货!
64 3
|
3月前
|
存储 缓存 算法
HashMap深度解析:从原理到实战
HashMap,作为Java集合框架中的一个核心组件,以其高效的键值对存储和检索机制,在软件开发中扮演着举足轻重的角色。作为一名资深的AI工程师,深入理解HashMap的原理、历史、业务场景以及实战应用,对于提升数据处理和算法实现的效率至关重要。本文将通过手绘结构图、流程图,结合Java代码示例,全方位解析HashMap,帮助读者从理论到实践全面掌握这一关键技术。
126 14
|
9天前
|
存储 缓存 人工智能
【原理】【Java并发】【synchronized】适合中学者体质的synchronized原理
本文深入解析了Java中`synchronized`关键字的底层原理,从代码块与方法修饰的区别到锁升级机制,内容详尽。通过`monitorenter`和`monitorexit`指令,阐述了`synchronized`实现原子性、有序性和可见性的原理。同时,详细分析了锁升级流程:无锁 → 偏向锁 → 轻量级锁 → 重量级锁,结合对象头`MarkWord`的变化,揭示JVM优化锁性能的策略。此外,还探讨了Monitor的内部结构及线程竞争锁的过程,并介绍了锁消除与锁粗化等优化手段。最后,结合实际案例,帮助读者全面理解`synchronized`在并发编程中的作用与细节。
35 8
【原理】【Java并发】【synchronized】适合中学者体质的synchronized原理
|
17天前
|
存储 缓存 安全
【原理】【Java并发】【volatile】适合初学者体质的volatile原理
欢迎来到我的技术博客!我是一名热爱编程的开发者,梦想是写出高端的CRUD应用。2025年,我正在沉淀自己,博客更新速度也在加快。在这里,我会分享关于Java并发编程的深入理解,尤其是volatile关键字的底层原理。 本文将带你深入了解Java内存模型(JMM),解释volatile如何通过内存屏障和缓存一致性协议确保可见性和有序性,同时探讨其局限性及优化方案。欢迎订阅专栏《在2B工作中寻求并发是否搞错了什么》,一起探索并发编程的奥秘! 关注我,点赞、收藏、评论,跟上更新节奏,让我们共同进步!
88 8
【原理】【Java并发】【volatile】适合初学者体质的volatile原理
|
10天前
|
消息中间件 Java 应用服务中间件
JVM实战—1.Java代码的运行原理
本文介绍了Java代码的运行机制、JVM类加载机制、JVM内存区域及其作用、垃圾回收机制,并汇总了一些常见问题。
JVM实战—1.Java代码的运行原理
|
4月前
HashMap原理
1.HashMap在Jdk1.8以后是基于数组+链表+红黑树来实现的,特点是,key不能重复,可以为null,线程不安全 2.HashMap的扩容机制: HashMap的默认容量为16,默认的负载因子为0.75,当HashMap中元素个数超过容量乘以负载因子的个数时,就创建一个大小为前一次两倍的新数组,再将原来数组中的数据复制到新数组中。当数组长度到达64且链表长度大于8时,链表转为红黑树
48 2
|
1月前
|
存储 缓存 安全
Java HashMap详解及实现原理
Java HashMap是Java集合框架中常用的Map接口实现,基于哈希表结构,允许null键和值,提供高效的存取操作。它通过哈希函数将键映射到数组索引,并使用链表或红黑树解决哈希冲突。HashMap非线程安全,多线程环境下需注意并发问题,常用解决方案包括ConcurrentHashMap和Collections.synchronizedMap()。此外,合理设置初始化容量和加载因子、重写hashCode()和equals()方法有助于提高性能和避免哈希冲突。
61 17
Java HashMap详解及实现原理
|
1月前
|
安全 Java 开发者
【JAVA】封装多线程原理
Java 中的多线程封装旨在简化使用、提高安全性和增强可维护性。通过抽象和隐藏底层细节,提供简洁接口。常见封装方式包括基于 Runnable 和 Callable 接口的任务封装,以及线程池的封装。Runnable 适用于无返回值任务,Callable 支持有返回值任务。线程池(如 ExecutorService)则用于管理和复用线程,减少性能开销。示例代码展示了如何实现这些封装,使多线程编程更加高效和安全。
|
1月前
|
存储 算法 Java
【JAVA】生成accessToken原理
在Java中,生成accessToken用于身份验证和授权,确保合法用户访问受保护资源。流程包括:1. 身份验证(如用户名密码、OAuth 2.0);2. 生成唯一且安全的令牌;3. 设置令牌有效期并存储;4. 客户端传递令牌,服务器验证其有效性。常见场景为OAuth 2.0协议,涉及客户端注册、用户授权、获取授权码和换取accessToken。示例代码展示了使用Apache HttpClient库模拟OAuth 2.0获取accessToken的过程。
|
3月前
|
监控 Java API
探索Java NIO:究竟在哪些领域能大显身手?揭秘原理、应用场景与官方示例代码
Java NIO(New IO)自Java SE 1.4引入,提供比传统IO更高效、灵活的操作,支持非阻塞IO和选择器特性,适用于高并发、高吞吐量场景。NIO的核心概念包括通道(Channel)、缓冲区(Buffer)和选择器(Selector),能实现多路复用和异步操作。其应用场景涵盖网络通信、文件操作、进程间通信及数据库操作等。NIO的优势在于提高并发性和性能,简化编程;但学习成本较高,且与传统IO存在不兼容性。尽管如此,NIO在构建高性能框架如Netty、Mina和Jetty中仍广泛应用。
78 3