python数据可视化----绘制各种图形

简介:

1.环境

系统:windows10

python版本:python3.6.1

使用的库:matplotlib,numpy

2.numpy库产生随机数几种方法

import numpy as np

numpy.random


415cca64bc9f3ac8b398030b7d3ed7201cad12f6


c01cad56047b2ec2d6405cc8c0378541beeca3f3

3.散点图
x x轴
y y轴
s   圆点面积
c   颜色
marker  圆点形状
alpha   圆点透明度                #其他图也类似这种配置
N=50
# height=np.random.randint(150,180,20)
# weight=np.random.randint(80,150,20)
x=np.random.randn(N)
y=np.random.randn(N)
plt.scatter(x,y,s=50,c='r',marker='o',alpha=0.5)
plt.show()


<a href=https://static.oschina.net/uploads/space/2017/0605/214829_e0Zy_3264690.png" >

4.折线图
x=np.linspace(-10000,10000,100) #将-10到10等区间分成100份
y=x**2+x**3+x**7
plt.plot(x,y)
plt.show()

折线图使用plot函数


215055_pISs_3264690.png

5.条形图
N=5
y=[20,10,30,25,15]
y1=np.random.randint(10,50,5)
x=np.random.randint(10,1000,N)
index=np.arange(N)
plt.bar(left=index,height=y,color='red',width=0.3)
plt.bar(left=index+0.3,height=y1,color='black',width=0.3)
plt.show()


215455_Zh1B_3264690.png

orientation设置横向条形图
N=5
y=[20,10,30,25,15]
y1=np.random.randint(10,50,5)
x=np.random.randint(10,1000,N)
index=np.arange(N)
# plt.bar(left=index,height=y,color='red',width=0.3)
# plt.bar(left=index+0.3,height=y1,color='black',width=0.3)
#plt.barh() 加了h就是横向的条形图,不用设置orientation
plt.bar(left=0,bottom=index,width=y,color='red',height=0.5,orientation='horizontal')
plt.show()


<a href=https://static.oschina.net/uploads/space/2017/0605/220327_Ta7z_3264690.png" >

6.直方图
m1=100
sigma=20
x=m1+sigma*np.random.randn(2000)
plt.hist(x,bins=50,color="green",normed=True)
plt.show()


<a href=https://static.oschina.net/uploads/space/2017/0605/220506_RysH_3264690.png" >
# #双变量的直方图
# #颜色越深频率越高
# #研究双变量的联合分布
#颜色越深频率越高
#研究双变量的联合分布
x=np.random.rand(1000)+2
y=np.random.rand(1000)+3
plt.hist2d(x,y,bins=40)
plt.show()


220609_IVvE_3264690.png

7.饼状图

设置x,y轴比例为1:1,从而达到一个正的圆

labels标签参数,x是对应的数据列表,autopct显示每一个区域占的比例,explode突出显示某一块,shadow阴影

labes=['A','B','C','D']
fracs=[15,30,45,10]
explode=[0,0.1,0.05,0]

#设置x,y轴比例为1:1,从而达到一个正的圆
plt.axes(aspect=1)
#labels标签参数,x是对应的数据列表,autopct显示每一个区域占的比例,explode突出显示某一块,shadow阴影
plt.pie(x=fracs,labels=labes,autopct="%.0f%%",explode=explode,shadow=True)
plt.show()
<div style="text-align: center">
 <img src="https://static.oschina.net/uploads/space/2017/0605/220734_9Fu
z```  
_3264690.png " >
</div>
8.箱型图

import matplotlib.pyplot as plt
import numpy as np
data=np.random.normal(loc=0,scale=1,size=1000)

sym 点的形状,whis虚线的长度

plt.boxplot(data,sym="o",whis=1.5)
plt.show()

sym 点的形状,whis虚线的长度

<div style="text-align: center">
 <img src=" https://static.oschina.net/uploads/space/2017/0605/220844_fGS8_3264690.png" >
</div>
相关文章
|
1月前
|
数据可视化 关系型数据库 MySQL
基于python大数据的的海洋气象数据可视化平台
针对海洋气象数据量大、维度多的挑战,设计基于ECharts的可视化平台,结合Python、Django与MySQL,实现数据高效展示与交互分析,提升科研与决策效率。
|
2月前
|
机器学习/深度学习 数据可视化 搜索推荐
基于python的汽车数据可视化、推荐及预测系统
本研究围绕汽车数据可视化、推荐及预测系统展开,结合大数据与人工智能技术,旨在提升用户体验与市场竞争力。内容涵盖研究背景、意义、相关技术如 Python、ECharts、协同过滤及随机森林回归等,探讨如何挖掘汽车数据价值,实现个性化推荐与智能预测,为汽车行业智能化发展提供支持。
|
2月前
|
数据采集 Web App开发 自然语言处理
新闻热点一目了然:Python爬虫数据可视化
新闻热点一目了然:Python爬虫数据可视化
|
2月前
|
数据采集 数据可视化 关系型数据库
基于python大数据的电影数据可视化分析系统
电影分析与可视化平台顺应电影产业数字化趋势,整合大数据处理、人工智能与Web技术,实现电影数据的采集、分析与可视化展示。平台支持票房、评分、观众行为等多维度分析,助力行业洞察与决策,同时提供互动界面,增强观众对电影文化的理解。技术上依托Python、MySQL、Flask、HTML等构建,融合数据采集与AI分析,提升电影行业的数据应用能力。
|
2月前
|
数据采集 搜索推荐 数据可视化
基于python大数据的商品数据可视化及推荐系统
本系统基于Python、Django与ECharts,构建大数据商品可视化及推荐平台。通过爬虫获取商品数据,利用可视化技术呈现销售趋势与用户行为,结合机器学习实现个性化推荐,助力电商精准营销与用户体验提升。
|
2月前
|
数据可视化 大数据 数据挖掘
基于python大数据的招聘数据可视化分析系统
本系统基于Python开发,整合多渠道招聘数据,利用数据分析与可视化技术,助力企业高效决策。核心功能包括数据采集、智能分析、可视化展示及权限管理,提升招聘效率与人才管理水平,推动人力资源管理数字化转型。
|
3月前
|
搜索推荐 算法 数据可视化
基于python大数据的招聘数据可视化及推荐系统
本研究聚焦于基于协同过滤的就业推荐系统设计与实现。随着就业压力增大和信息技术发展,传统求职方式面临挑战。通过分析用户行为与职位特征,协同过滤技术可实现个性化职位推荐,提升求职与招聘效率。研究涵盖系统架构、数据采集、算法实现及可视化展示,旨在优化就业匹配,促进人才与岗位精准对接,助力就业市场智能化发展。
|
5月前
|
数据可视化 算法 数据挖掘
Python 3D数据可视化:7个实用案例助你快速上手
本文介绍了基于 Python Matplotlib 库的七种三维数据可视化技术,涵盖线性绘图、散点图、曲面图、线框图、等高线图、三角剖分及莫比乌斯带建模。通过具体代码示例和输出结果,展示了如何配置三维投影环境并实现复杂数据的空间表示。这些方法广泛应用于科学计算、数据分析与工程领域,帮助揭示多维数据中的空间关系与规律,为深入分析提供技术支持。
207 0
Python 3D数据可视化:7个实用案例助你快速上手
|
6月前
|
人工智能 数据可视化 数据挖掘
如何使用Python进行数据可视化
Python是一种强大的编程语言,广泛应用于数据分析与可视化。常见的可视化库有Matplotlib、Seaborn和Plotly等。数据可视化通常包括以下步骤:准备数据(如列表或从文件读取)、选择合适的工具、绘制图表、优化样式(如标题和标签)以及保存或分享结果。例如,使用Matplotlib可通过简单代码绘制线图并添加标题和轴标签。实际应用中,可通过调整颜色、样式等进一步优化图表,甚至使用交互式工具提升效果。总之,Python的丰富工具为数据可视化提供了强大支持。
225 5
|
11月前
|
数据可视化 数据挖掘 DataX
Python 数据可视化的完整指南
Python 数据可视化在数据分析和科学研究中至关重要,它能帮助我们理解数据、发现规律并以直观方式呈现复杂信息。Python 提供了丰富的可视化库,如 Matplotlib、Seaborn、Plotly 和 Pandas 的绘图功能,使得图表生成简单高效。本文通过具体代码示例和案例,介绍了折线图、柱状图、饼图、散点图、箱形图、热力图和小提琴图等常用图表类型,并讲解了自定义样式和高级技巧,帮助读者更好地掌握 Python 数据可视化工具的应用。
664 3

推荐镜像

更多