爬楼梯(LeetCode-70)

简介: 爬楼梯(LeetCode-70)

2. 爬楼梯(LeetCode-70)


题目

假设你正在爬楼梯。需要 n 阶你才能到达楼顶。


每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢?


**注意:**给定 n 是一个正整数。


示例 1:

输入: 2
输出: 2
解释: 有两种方法可以爬到楼顶。
1.  1 阶 + 1 阶
2.  2 阶


示例 2:

输入: 3
输出: 3
解释: 有三种方法可以爬到楼顶。
1.  1 阶 + 1 阶 + 1 阶
2.  1 阶 + 2 阶
3.  2 阶 + 1 阶


思路

第⼀层楼梯再跨两步就到第三层 ,第⼆层楼梯再跨⼀步就到第三层。 所以到第三层楼梯的状态可以由第⼆层楼梯和到第⼀层楼梯状态推导出来


五部曲


dp[i] 定义:爬到第 i 阶有 dp[i] 种方法

d p [ i ] = d p [ i − 2 ] + d p [ i − 1 ]

dp[1]=1 dp[2]=2 正整数不用考虑 dp[0]

肯定从前往后

前五项 1 2 3 5 8


代码展示

class Solution
{
public:
    int climbStairs(int n)
    {
        // 这步忘记了,导致n=1时访问不到dp[2]
        if (n<=1)
        {
            return n;
        }  
        vector<int> dp(n + 1);
        dp[1] = 1, dp[2] = 2;
        for (int i = 3; i <= n; i++)
        {
            dp[i] = dp[i - 1] + dp[i - 2];
            cout << dp[i];
        }
        return dp[n];
    }
};


也是可以优化,滚动数组优化空间

class Solution
{
public:
    int climbStairs(int n)
    {
        if (n <= 2)
        {
            return n;
        }
        vector<int> dp(3);
        dp[1] = 1, dp[2] = 2;
        int result;
        for (int i = 3; i <= n; i++)
        {
            result = dp[1] + dp[2];
            dp[1] = dp[2];
            dp[2] = result;
        }
        return result;
    }
};
目录
相关文章
|
1月前
LeetCode爬楼梯
解决LeetCode上“爬楼梯”问题的动态规划方法,其中每次可以爬1或2个台阶,目标是计算到达楼顶的不同方法数。
27 0
|
3月前
|
算法 Java
LeetCode第70题爬楼梯
这篇文章是关于LeetCode第70题"爬楼梯"的解题分享。作者首先分析了题目,指出这是一个简单的问题,并且可以通过观察发现爬楼梯的规律:到达第n层楼梯的走法数等于到达第n-1层和第n-2层楼梯的走法数之和。接着,作者提供了一个Java语言的代码实现,使用了迭代的方式来计算爬楼梯的走法数。最后,作者总结了动态规划思想在解决这类问题时的应用,强调了通过观察问题找出规律的重要性。
LeetCode第70题爬楼梯
|
5月前
|
Java Go C++
Leetcode70. 爬楼梯(动态规划)
Leetcode70. 爬楼梯(动态规划)
29 0
|
6月前
【力扣】70. 爬楼梯
【力扣】70. 爬楼梯
|
6月前
leetcode-70:爬楼梯
leetcode-70:爬楼梯
48 0
leetcode:70. 爬楼梯
此题运用递归思想。当只有1个台阶,那么只有1种方法爬到楼顶——跨一个台阶;当有2个台阶时,有2种方法爬到楼顶——跨一个台阶跨两次或直接跨两个台阶。当有3个台阶或更多台阶时,则可以选择先跨一个台阶还是先跨两个台阶,剩下的台阶再进行选择是先跨一个台阶还是先跨两个台阶……从而实现递归
39 0
【力扣刷题】整数拆分(动态规划)
动态规划其基本思想是将待求解问题分解成若干个子问题,先求解子问题,然后从这些子问题的解得到原问题的解,经分解得到子问题往往不是互相独立的,举个简单的例子:你知道两个1相加等于2,问你三个1相加你是拿前面的两个1相加的结果加上1呢,还是再用1+1+1,你肯定会用前面的那种方法对吧,这就是动态规划,(1+1)就是(1+1+1)的子问题,且并不是相互独立,你得到了(1+1)就好得到(1+1+1)了
159 0
【力扣刷题】整数拆分(动态规划)